論文の概要: Exposing Image Classifier Shortcuts with Counterfactual Frequency (CoF) Tables
- arxiv url: http://arxiv.org/abs/2405.15661v1
- Date: Fri, 24 May 2024 15:58:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 13:20:55.787059
- Title: Exposing Image Classifier Shortcuts with Counterfactual Frequency (CoF) Tables
- Title(参考訳): 実測周波数(CoF)表を用いた画像分類器ショートカットの抽出
- Authors: James Hinns, David Martens,
- Abstract要約: 「ショートカット」は、新しいデータへの一般化に失敗するトレーニングデータから簡単に学習できるパターンである。
例えば、馬を認識するための著作権の透かし、ハスキーを認識するための雪の背景、悪性皮膚病変を検出するためのインクマーキングなどである。
我々は、グローバルな洞察にインスタンスベースの説明を集約する新しいアプローチである、対実周波数表を導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of deep learning in image classification has brought unprecedented accuracy but also highlighted a key issue: the use of 'shortcuts' by models. Such shortcuts are easy-to-learn patterns from the training data that fail to generalise to new data. Examples include the use of a copyright watermark to recognise horses, snowy background to recognise huskies, or ink markings to detect malignant skin lesions. The explainable AI (XAI) community has suggested using instance-level explanations to detect shortcuts without external data, but this requires the examination of many explanations to confirm the presence of such shortcuts, making it a labour-intensive process. To address these challenges, we introduce Counterfactual Frequency (CoF) tables, a novel approach that aggregates instance-based explanations into global insights, and exposes shortcuts. The aggregation implies the need for some semantic concepts to be used in the explanations, which we solve by labelling the segments of an image. We demonstrate the utility of CoF tables across several datasets, revealing the shortcuts learned from them.
- Abstract(参考訳): 画像分類におけるディープラーニングの台頭は前例のない精度をもたらしたが、モデルによる「ショートカット」の使用という重要な問題も浮き彫りにした。
このようなショートカットは、新しいデータへの一般化に失敗するトレーニングデータから簡単に学習できるパターンである。
例えば、馬を認識するための著作権の透かし、ハスキーを認識するための雪の背景、悪性皮膚病変を検出するためのインクマーキングなどである。
説明可能なAI(XAI)コミュニティは、外部データなしでショートカットを検出するためにインスタンスレベルの説明を使用することを提案するが、このようなショートカットの存在を確認するには、多くの説明を検査する必要があるため、労働集約的なプロセスである。
これらの課題に対処するために、我々は、インスタンスベースの説明をグローバルな洞察に集約し、ショートカットを公開する新しいアプローチである、CoFテーブルを導入します。
このアグリゲーションは、画像のセグメントをラベル付けすることで解決する説明に使用されるセマンティックな概念の必要性を示唆している。
いくつかのデータセットにまたがるCoFテーブルの有用性を実証し、それらから学んだショートカットを明らかにする。
関連論文リスト
- A Good Foundation is Worth Many Labels: Label-Efficient Panoptic Segmentation [22.440065488051047]
ロボット知覚に学習ベースのモデルを広く応用する上での課題は、注釈付きトレーニングデータの必要量を大幅に削減することである。
視覚基礎モデルにより舗装された基礎を生かし、セマンティックセグメンテーションとオブジェクト境界検出のために2つの軽量ネットワークヘッドを訓練する。
PASTELはアノテーションが少なくてもラベル効率の良いセグメンテーションの手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-05-29T12:23:29Z) - How to Construct Perfect and Worse-than-Coin-Flip Spoofing
Countermeasures: A Word of Warning on Shortcut Learning [20.486639064376014]
ショートカット学習(英: Shortcut learning、またはClever Hans effect)とは、学習エージェントがデータに存在する急激な相関を学習し、バイアスのあるモデルをもたらす状況を指す。
本研究では, 深層学習に基づくスプーフィング対策(CM)において, ある発話がスプーフィングされているか否かを予測するショートカットの発見に焦点をあてる。
論文 参考訳(メタデータ) (2023-05-31T15:58:37Z) - Neglected Free Lunch -- Learning Image Classifiers Using Annotation
Byproducts [43.76258241948858]
画像分類器の教師付き学習は、画像と対応するラベル(X,Y)のペアを通して、人間の知識をパラメトリックモデルに蒸留する
このシンプルで広く使われている人間の知識の表現は、アノテーションの手順から豊富な補助情報を無視していると論じる。
我々は、アノテーション副産物を用いたトレーニングモデルの新たなパラダイムを、アノテーション副産物(LUAB)を用いた学習として言及する。
論文 参考訳(メタデータ) (2023-03-30T17:59:02Z) - Shortcut Detection with Variational Autoencoders [1.3174512123890016]
可変オートエンコーダ(VAE)を利用した画像および音声データセットのショートカット検出手法を提案する。
VAEの潜在空間における特徴の分散により、データセット内の特徴目標相関を発見し、MLショートカットに対して半自動評価することが可能になる。
本手法の適用性を実世界のいくつかのデータセットに適用し,これまで発見されていないショートカットを同定する。
論文 参考訳(メタデータ) (2023-02-08T18:26:10Z) - Which Shortcut Solution Do Question Answering Models Prefer to Learn? [38.36299280464046]
質問応答(QA)モデルは、QAデータセットが意図したソリューションではなく、ショートカットソリューションを学ぶ傾向がある。
抽出および複数選択QAにおいて,回答位置と単語ラベル相関を利用したショートカットが優先的に学習されていることを示す。
我々は,ショートカットの学習性を利用して効果的なQA学習セットを構築することを実験的に示す。
論文 参考訳(メタデータ) (2022-11-29T13:57:59Z) - No Token Left Behind: Explainability-Aided Image Classification and
Generation [79.4957965474334]
ここでは、CLIPが入力のすべての関連する意味的部分に焦点を当てることを保証するために、損失項を追加する新しい説明可能性に基づくアプローチを提案する。
本手法は, 追加訓練や微調整を伴わずに, 認識率の向上を図っている。
論文 参考訳(メタデータ) (2022-04-11T07:16:39Z) - Weakly Supervised Semantic Segmentation using Out-of-Distribution Data [50.45689349004041]
弱教師付きセマンティックセグメンテーション(WSSS)法は、しばしばピクセルレベルのローカライゼーションマップ上に構築される。
本稿では,背景と背景を区別する新たな情報源を提案する。
論文 参考訳(メタデータ) (2022-03-08T05:33:35Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
本報告では,本問題に対する第1の弱教師付きアプローチを提案する。
本稿では,候補対象の特定にクラス整合性情報を活用するSaliency Detection Branch,オブジェクト境界をデライン化するためにクラス整合性情報を利用するBundary Detection Branch,サブティナイズ情報を用いたCentroid Detection Branchを提案する。
論文 参考訳(メタデータ) (2021-11-19T10:15:22Z) - Why Machine Reading Comprehension Models Learn Shortcuts? [56.629192589376046]
トレーニングデータにおけるショートカットの質問の大部分が、モデルが過度にショートカットのトリックに依存している、と私たちは主張する。
徹底的な実証分析により、MRCモデルは挑戦的な質問よりも早くショートカットの質問を学習する傾向が示されている。
論文 参考訳(メタデータ) (2021-06-02T08:43:12Z) - Knowledge-Guided Multi-Label Few-Shot Learning for General Image
Recognition [75.44233392355711]
KGGRフレームワークは、ディープニューラルネットワークと統計ラベル相関の事前知識を利用する。
まず、統計ラベルの共起に基づいて異なるラベルを相関させる構造化知識グラフを構築する。
次に、ラベルセマンティクスを導入し、学習セマンティクス固有の特徴をガイドする。
グラフノードの相互作用を探索するためにグラフ伝搬ネットワークを利用する。
論文 参考訳(メタデータ) (2020-09-20T15:05:29Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。