Consistency of Neural Causal Partial Identification
- URL: http://arxiv.org/abs/2405.15673v1
- Date: Fri, 24 May 2024 16:12:39 GMT
- Title: Consistency of Neural Causal Partial Identification
- Authors: Jiyuan Tan, Jose Blanchet, Vasilis Syrgkanis,
- Abstract summary: We show consistency of partial identification via Neural Causal Models (NCMs) in a general setting with both continuous and categorical variables.
Results highlight the impact of the design of the underlying neural network architecture in terms of depth and connectivity.
We provide a counterexample showing that without Lipschitz regularization the NCM may not be consistent.
- Score: 17.503562318576414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent progress in Neural Causal Models (NCMs) showcased how identification and partial identification of causal effects can be automatically carried out via training of neural generative models that respect the constraints encoded in a given causal graph [Xia et al. 2022, Balazadeh et al. 2022]. However, formal consistency of these methods has only been proven for the case of discrete variables or only for linear causal models. In this work, we prove consistency of partial identification via NCMs in a general setting with both continuous and categorical variables. Further, our results highlight the impact of the design of the underlying neural network architecture in terms of depth and connectivity as well as the importance of applying Lipschitz regularization in the training phase. In particular, we provide a counterexample showing that without Lipschitz regularization the NCM may not be asymptotically consistent. Our results are enabled by new results on the approximability of structural causal models via neural generative models, together with an analysis of the sample complexity of the resulting architectures and how that translates into an error in the constrained optimization problem that defines the partial identification bounds.
Related papers
- Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
We develop a novel and versatile methodology of unified neural partial delay differential equations.
We augment existing/low-fidelity dynamical models directly in their partial differential equation (PDE) forms with both Markovian and non-Markovian neural network (NN) closure parameterizations.
We demonstrate the new generalized neural closure models (gnCMs) framework using four sets of experiments based on advecting nonlinear waves, shocks, and ocean acidification models.
arXiv Detail & Related papers (2023-01-15T21:57:43Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
An object called structural causal model (SCM) represents a collection of mechanisms and sources of random variation of the system under investigation.
In this paper, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020) still holds for neural models.
We introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences.
arXiv Detail & Related papers (2021-07-02T01:55:18Z) - Causal Abstractions of Neural Networks [9.291492712301569]
We propose a new structural analysis method grounded in a formal theory of textitcausal abstraction.
We apply this method to analyze neural models trained on Multiply Quantified Natural Language Inference (MQNLI) corpus.
arXiv Detail & Related papers (2021-06-06T01:07:43Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.