Generalized Neural Closure Models with Interpretability
- URL: http://arxiv.org/abs/2301.06198v2
- Date: Thu, 18 May 2023 11:15:22 GMT
- Title: Generalized Neural Closure Models with Interpretability
- Authors: Abhinav Gupta and Pierre F.J. Lermusiaux
- Abstract summary: We develop a novel and versatile methodology of unified neural partial delay differential equations.
We augment existing/low-fidelity dynamical models directly in their partial differential equation (PDE) forms with both Markovian and non-Markovian neural network (NN) closure parameterizations.
We demonstrate the new generalized neural closure models (gnCMs) framework using four sets of experiments based on advecting nonlinear waves, shocks, and ocean acidification models.
- Score: 28.269731698116257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Improving the predictive capability and computational cost of dynamical
models is often at the heart of augmenting computational physics with machine
learning (ML). However, most learning results are limited in interpretability
and generalization over different computational grid resolutions, initial and
boundary conditions, domain geometries, and physical or problem-specific
parameters. In the present study, we simultaneously address all these
challenges by developing the novel and versatile methodology of unified neural
partial delay differential equations. We augment existing/low-fidelity
dynamical models directly in their partial differential equation (PDE) forms
with both Markovian and non-Markovian neural network (NN) closure
parameterizations. The melding of the existing models with NNs in the
continuous spatiotemporal space followed by numerical discretization
automatically allows for the desired generalizability. The Markovian term is
designed to enable extraction of its analytical form and thus provides
interpretability. The non-Markovian terms allow accounting for inherently
missing time delays needed to represent the real world. We obtain adjoint PDEs
in the continuous form, thus enabling direct implementation across
differentiable and non-differentiable computational physics codes, different ML
frameworks, and treatment of nonuniformly-spaced spatiotemporal training data.
We demonstrate the new generalized neural closure models (gnCMs) framework
using four sets of experiments based on advecting nonlinear waves, shocks, and
ocean acidification models. Our learned gnCMs discover missing physics, find
leading numerical error terms, discriminate among candidate functional forms in
an interpretable fashion, achieve generalization, and compensate for the lack
of complexity in simpler models. Finally, we analyze the computational
advantages of our new framework.
Related papers
- Differentiable Neural-Integrated Meshfree Method for Forward and Inverse Modeling of Finite Strain Hyperelasticity [1.290382979353427]
The present study aims to extend the novel physics-informed machine learning approach, specifically the neural-integrated meshfree (NIM) method, to model finite-strain problems.
Thanks to the inherent differentiable programming capabilities, NIM can circumvent the need for derivation of Newton-Raphson linearization of the variational form.
NIM is applied to identify heterogeneous mechanical properties of hyperelastic materials from strain data, validating its effectiveness in the inverse modeling of nonlinear materials.
arXiv Detail & Related papers (2024-07-15T19:15:18Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Neural Stochastic Partial Differential Equations [1.2183405753834562]
We introduce the Neural SPDE model providing an extension to two important classes of physics-inspired neural architectures.
On the one hand, it extends all the popular neural -- ordinary, controlled, rough -- differential equation models in that it is capable of processing incoming information.
On the other hand, it extends Neural Operators -- recent generalizations of neural networks modelling mappings between functional spaces -- in that it can be used to learn complex SPDE solution operators.
arXiv Detail & Related papers (2021-10-19T20:35:37Z) - Long-time integration of parametric evolution equations with
physics-informed DeepONets [0.0]
We introduce an effective framework for learning infinite-dimensional operators that map random initial conditions to associated PDE solutions within a short time interval.
Global long-time predictions across a range of initial conditions can be then obtained by iteratively evaluating the trained model.
This introduces a new approach to temporal domain decomposition that is shown to be effective in performing accurate long-time simulations.
arXiv Detail & Related papers (2021-06-09T20:46:17Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.