Canonical Variates in Wasserstein Metric Space
- URL: http://arxiv.org/abs/2405.15768v1
- Date: Fri, 24 May 2024 17:59:21 GMT
- Title: Canonical Variates in Wasserstein Metric Space
- Authors: Jia Li, Lin Lin,
- Abstract summary: We employ the Wasserstein metric to measure distances between distributions, which are then used by distance-based classification algorithms.
Central to our investigation is dimension reduction within the Wasserstein metric space to enhance classification accuracy.
We introduce a novel approach grounded in the principle of maximizing Fisher's ratio, defined as the quotient of between-class variation to within-class variation.
- Score: 16.668946904062032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we address the classification of instances each characterized not by a singular point, but by a distribution on a vector space. We employ the Wasserstein metric to measure distances between distributions, which are then used by distance-based classification algorithms such as k-nearest neighbors, k-means, and pseudo-mixture modeling. Central to our investigation is dimension reduction within the Wasserstein metric space to enhance classification accuracy. We introduce a novel approach grounded in the principle of maximizing Fisher's ratio, defined as the quotient of between-class variation to within-class variation. The directions in which this ratio is maximized are termed discriminant coordinates or canonical variates axes. In practice, we define both between-class and within-class variations as the average squared distances between pairs of instances, with the pairs either belonging to the same class or to different classes. This ratio optimization is achieved through an iterative algorithm, which alternates between optimal transport and maximization steps within the vector space. We conduct empirical studies to assess the algorithm's convergence and, through experimental validation, demonstrate that our dimension reduction technique substantially enhances classification performance. Moreover, our method outperforms well-established algorithms that operate on vector representations derived from distributional data. It also exhibits robustness against variations in the distributional representations of data clouds.
Related papers
- Statistical Inference in Classification of High-dimensional Gaussian Mixture [1.2354076490479515]
We investigate the behavior of a general class of regularized convex classifiers in the high-dimensional limit.
Our focus is on the generalization error and variable selection properties of the estimators.
arXiv Detail & Related papers (2024-10-25T19:58:36Z) - Adaptive $k$-nearest neighbor classifier based on the local estimation of the shape operator [49.87315310656657]
We introduce a new adaptive $k$-nearest neighbours ($kK$-NN) algorithm that explores the local curvature at a sample to adaptively defining the neighborhood size.
Results on many real-world datasets indicate that the new $kK$-NN algorithm yields superior balanced accuracy compared to the established $k$-NN method.
arXiv Detail & Related papers (2024-09-08T13:08:45Z) - Convergence rate of random scan Coordinate Ascent Variational Inference under log-concavity [0.18416014644193066]
The Coordinate Ascent Variational Inference scheme is a popular algorithm used to compute the mean-field approximation of a probability distribution of interest.
We analyze its random scan version, under log-concavity assumptions on the target density.
arXiv Detail & Related papers (2024-06-11T14:23:01Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance [10.153270126742369]
We study gradient flows in both probability density space and Gaussian space.
The flow in the Gaussian space may be understood as a Gaussian approximation of the flow.
arXiv Detail & Related papers (2023-02-21T21:44:08Z) - Subspace clustering in high-dimensions: Phase transitions \&
Statistical-to-Computational gap [24.073221004661427]
A simple model to study subspace clustering is the high-dimensional $k$-Gaussian mixture model.
We provide an exact characterization of the statistically optimal reconstruction error in this model in the high-dimensional regime with extensive sparsity.
arXiv Detail & Related papers (2022-05-26T17:47:35Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Distributed Variational Bayesian Algorithms Over Sensor Networks [6.572330981878818]
We propose two novel distributed VB algorithms for general Bayesian inference problem.
The proposed algorithms have excellent performance, which are almost as good as the corresponding centralized VB algorithm relying on all data available in a fusion center.
arXiv Detail & Related papers (2020-11-27T08:12:18Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.