Benign Overfitting and the Geometry of the Ridge Regression Solution in Binary Classification
- URL: http://arxiv.org/abs/2503.07966v1
- Date: Tue, 11 Mar 2025 01:45:42 GMT
- Title: Benign Overfitting and the Geometry of the Ridge Regression Solution in Binary Classification
- Authors: Alexander Tsigler, Luiz F. O. Chamon, Spencer Frei, Peter L. Bartlett,
- Abstract summary: We show that ridge regression has qualitatively different behavior depending on the scale of the cluster mean vector.<n>In regimes where the scale is very large, the conditions that allow for benign overfitting turn out to be the same as those for the regression task.
- Score: 75.01389991485098
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we investigate the behavior of ridge regression in an overparameterized binary classification task. We assume examples are drawn from (anisotropic) class-conditional cluster distributions with opposing means and we allow for the training labels to have a constant level of label-flipping noise. We characterize the classification error achieved by ridge regression under the assumption that the covariance matrix of the cluster distribution has a high effective rank in the tail. We show that ridge regression has qualitatively different behavior depending on the scale of the cluster mean vector and its interaction with the covariance matrix of the cluster distributions. In regimes where the scale is very large, the conditions that allow for benign overfitting turn out to be the same as those for the regression task. We additionally provide insights into how the introduction of label noise affects the behavior of the minimum norm interpolator (MNI). The optimal classifier in this setting is a linear transformation of the cluster mean vector and in the noiseless setting the MNI approximately learns this transformation. On the other hand, the introduction of label noise can significantly change the geometry of the solution while preserving the same qualitative behavior.
Related papers
- Canonical Variates in Wasserstein Metric Space [16.668946904062032]
We employ the Wasserstein metric to measure distances between distributions, which are then used by distance-based classification algorithms.
Central to our investigation is dimension reduction within the Wasserstein metric space to enhance classification accuracy.
We introduce a novel approach grounded in the principle of maximizing Fisher's ratio, defined as the quotient of between-class variation to within-class variation.
arXiv Detail & Related papers (2024-05-24T17:59:21Z) - Regularized Linear Regression for Binary Classification [20.710343135282116]
Regularized linear regression is a promising approach for binary classification problems in which the training set has noisy labels.
We show that for large enough regularization strength, the optimal weights concentrate around two values of opposite sign.
We observe that in many cases the corresponding "compression" of each weight to a single bit leads to very little loss in performance.
arXiv Detail & Related papers (2023-11-03T23:18:21Z) - Deep Imbalanced Regression via Hierarchical Classification Adjustment [50.19438850112964]
Regression tasks in computer vision are often formulated into classification by quantizing the target space into classes.
The majority of training samples lie in a head range of target values, while a minority of samples span a usually larger tail range.
We propose to construct hierarchical classifiers for solving imbalanced regression tasks.
Our novel hierarchical classification adjustment (HCA) for imbalanced regression shows superior results on three diverse tasks.
arXiv Detail & Related papers (2023-10-26T04:54:39Z) - The Implicit Bias of Batch Normalization in Linear Models and Two-layer
Linear Convolutional Neural Networks [117.93273337740442]
We show that gradient descent converges to a uniform margin classifier on the training data with an $exp(-Omega(log2 t))$ convergence rate.
We also show that batch normalization has an implicit bias towards a patch-wise uniform margin.
arXiv Detail & Related papers (2023-06-20T16:58:00Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - On Robust Learning from Noisy Labels: A Permutation Layer Approach [53.798757734297986]
This paper introduces a permutation layer learning approach termed PermLL to dynamically calibrate the training process of a deep neural network (DNN)
We provide two variants of PermLL in this paper: one applies the permutation layer to the model's prediction, while the other applies it directly to the given noisy label.
We validate PermLL experimentally and show that it achieves state-of-the-art performance on both real and synthetic datasets.
arXiv Detail & Related papers (2022-11-29T03:01:48Z) - Label-Imbalanced and Group-Sensitive Classification under
Overparameterization [32.923780772605596]
Label-imbalanced and group-sensitive classification seeks to appropriately modify standard training algorithms to optimize relevant metrics.
We show that a logit-adjusted loss modification to standard empirical risk minimization might be ineffective in general.
We show that our results extend naturally to binary classification with sensitive groups, thus treating the two common types of imbalances (label/group) in a unifying way.
arXiv Detail & Related papers (2021-03-02T08:09:43Z) - Binary Classification of Gaussian Mixtures: Abundance of Support
Vectors, Benign Overfitting and Regularization [39.35822033674126]
We study binary linear classification under a generative Gaussian mixture model.
We derive novel non-asymptotic bounds on the classification error of the latter.
Our results extend to a noisy model with constant probability noise flips.
arXiv Detail & Related papers (2020-11-18T07:59:55Z) - Learning from Aggregate Observations [82.44304647051243]
We study the problem of learning from aggregate observations where supervision signals are given to sets of instances.
We present a general probabilistic framework that accommodates a variety of aggregate observations.
Simple maximum likelihood solutions can be applied to various differentiable models.
arXiv Detail & Related papers (2020-04-14T06:18:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.