論文の概要: LiteNeXt: A Novel Lightweight ConvMixer-based Model with Self-embedding Representation Parallel for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2405.15779v1
- Date: Thu, 4 Apr 2024 01:59:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 08:29:41.475790
- Title: LiteNeXt: A Novel Lightweight ConvMixer-based Model with Self-embedding Representation Parallel for Medical Image Segmentation
- Title(参考訳): LiteNeXt:医療画像セグメンテーションのための自己埋め込み表現パラレルを用いた軽量ConvMixerベースモデル
- Authors: Ngoc-Du Tran, Thi-Thao Tran, Quang-Huy Nguyen, Manh-Hung Vu, Van-Truong Pham,
- Abstract要約: 医用画像分割のための軽量だが効率的な新しいモデル LiteNeXt を提案する。
LiteNeXtは、少量のパラメータ (0.71M) とギガ浮動小数点演算 (0.42) でスクラッチから訓練されている。
- 参考スコア(独自算出の注目度): 2.0901574458380403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of deep learning techniques has advanced the image segmentation task, especially for medical images. Many neural network models have been introduced in the last decade bringing the automated segmentation accuracy close to manual segmentation. However, cutting-edge models like Transformer-based architectures rely on large scale annotated training data, and are generally designed with densely consecutive layers in the encoder, decoder, and skip connections resulting in large number of parameters. Additionally, for better performance, they often be pretrained on a larger data, thus requiring large memory size and increasing resource expenses. In this study, we propose a new lightweight but efficient model, namely LiteNeXt, based on convolutions and mixing modules with simplified decoder, for medical image segmentation. The model is trained from scratch with small amount of parameters (0.71M) and Giga Floating Point Operations Per Second (0.42). To handle boundary fuzzy as well as occlusion or clutter in objects especially in medical image regions, we propose the Marginal Weight Loss that can help effectively determine the marginal boundary between object and background. Furthermore, we propose the Self-embedding Representation Parallel technique, that can help augment the data in a self-learning manner. Experiments on public datasets including Data Science Bowls, GlaS, ISIC2018, PH2, and Sunnybrook data show promising results compared to other state-of-the-art CNN-based and Transformer-based architectures. Our code will be published at: https://github.com/tranngocduvnvp/LiteNeXt.
- Abstract(参考訳): 深層学習技術の出現は、特に医用画像において、画像セグメンテーションタスクを前進させてきた。
過去10年間に多くのニューラルネットワークモデルが導入され、手動セグメンテーションに近い自動セグメンテーションの精度を実現している。
しかし、Transformerベースのアーキテクチャのような最先端モデルは、大規模なアノテートされたトレーニングデータに依存しており、一般にエンコーダ、デコーダ、スキップ接続の層が密に連続して設計され、多数のパラメータが生成される。
さらに、パフォーマンス向上のためには、大きなデータで事前訓練されることが多いため、メモリサイズが大きくなり、リソースコストが増加する必要がある。
本研究では,医用画像セグメンテーションのために,畳み込みと簡易デコーダと混合モジュールに基づく軽量だが効率的な新しいモデル LiteNeXt を提案する。
このモデルは、少量のパラメータ (0.71M) とギガ浮動小数点演算 (0.42) でスクラッチから訓練されている。
特に医用画像領域では, 境界ファジィやオクルージョンや乱れに対処するために, 物体と背景の境界を効果的に決定できるMarginal Weight Lossを提案する。
さらに,自己埋め込み表現パラレル手法を提案する。
Data Science Bowls、GlaS、ISIC2018、PH2、Sunnybrookといった公開データセットの実験は、他の最先端のCNNベースのアーキテクチャやTransformerベースのアーキテクチャと比較して有望な結果を示している。
私たちのコードは、https://github.com/tranngocduvnvp/LiteNeXt.comで公開されます。
関連論文リスト
- Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain [48.440691680864745]
我々はLoGoNetと呼ばれる新しいニューラルネットワークアーキテクチャを導入する。
LoGoNetは、LKA(Large Kernel Attention)とデュアルエンコーディング戦略を利用して、U字型アーキテクチャに新しい特徴抽出器を統合する。
大規模ラベル付きデータセットの欠如を補うために,3次元画像に適した新しいSSL方式を提案する。
論文 参考訳(メタデータ) (2024-02-09T05:06:58Z) - VM-UNet: Vision Mamba UNet for Medical Image Segmentation [2.3876474175791302]
医用画像セグメンテーションのためのU字型アーキテクチャモデルVision Mamba UNet(VM-UNet)を提案する。
我々はISIC17,ISIC18,Synapseデータセットの総合的な実験を行い,VM-UNetが医用画像分割タスクにおいて競争力を発揮することを示す。
論文 参考訳(メタデータ) (2024-02-04T13:37:21Z) - PMFSNet: Polarized Multi-scale Feature Self-attention Network For
Lightweight Medical Image Segmentation [6.134314911212846]
現在の最先端の医用画像分割法は精度を優先するが、計算要求の増大とより大きなモデルサイズを犠牲にすることも多い。
計算冗長性を避けつつグローバルな局所特徴処理のバランスをとる新しい医用画像分割モデルPMFSNetを提案する。
長期依存関係をキャプチャするために,アテンション機構に基づいたマルチスケール機能拡張モジュールであるPMFSブロックをプラグインとして組み込んでいる。
論文 参考訳(メタデータ) (2024-01-15T10:26:47Z) - Dataset Quantization [72.61936019738076]
大規模データセットを小さなサブセットに圧縮する新しいフレームワークであるデータセット量子化(DQ)を提案する。
DQは、ImageNet-1kのような大規模データセットを最先端圧縮比で蒸留する最初の方法である。
論文 参考訳(メタデータ) (2023-08-21T07:24:29Z) - DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion
Models [61.906934570771256]
多様な合成画像や知覚アノテーションを生成できる汎用データセット生成モデルを提案する。
本手法は,事前学習した拡散モデルに基づいて,テキスト誘導画像合成を知覚データ生成に拡張する。
拡散モデルのリッチ潜時コードはデコーダモジュールを用いて正確な認識アノテーションとして効果的に復号できることを示す。
論文 参考訳(メタデータ) (2023-08-11T14:38:11Z) - Large-Margin Representation Learning for Texture Classification [67.94823375350433]
本稿では,テクスチャ分類のための小さなデータセット上で教師付きモデルをトレーニングするために,畳み込み層(CL)と大規模計量学習を組み合わせた新しいアプローチを提案する。
テクスチャと病理画像データセットの実験結果から,提案手法は同等のCNNと比較して計算コストが低く,収束が早く,競争精度が向上することが示された。
論文 参考訳(メタデータ) (2022-06-17T04:07:45Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - Learning Fast and Robust Target Models for Video Object Segmentation [83.3382606349118]
ビデオオブジェクトセグメンテーション(VOS)は、ターゲットオブジェクトを定義する初期マスクがテスト時にのみ与えられるため、非常に難しい問題である。
それまでのほとんどの場合、第1フレーム上のファイン・チューン・セグメンテーション・ネットワークにアプローチし、非現実的なフレームレートとオーバーフィッティングのリスクをもたらす。
本稿では,2つのネットワークコンポーネントからなる新しいVOSアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-27T21:58:06Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。