LiteNeXt: A Novel Lightweight ConvMixer-based Model with Self-embedding Representation Parallel for Medical Image Segmentation
- URL: http://arxiv.org/abs/2405.15779v1
- Date: Thu, 4 Apr 2024 01:59:19 GMT
- Title: LiteNeXt: A Novel Lightweight ConvMixer-based Model with Self-embedding Representation Parallel for Medical Image Segmentation
- Authors: Ngoc-Du Tran, Thi-Thao Tran, Quang-Huy Nguyen, Manh-Hung Vu, Van-Truong Pham,
- Abstract summary: We propose a new lightweight but efficient model, namely LiteNeXt, for medical image segmentation.
LiteNeXt is trained from scratch with small amount of parameters (0.71M) and Giga Floating Point Operations Per Second (0.42).
- Score: 2.0901574458380403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of deep learning techniques has advanced the image segmentation task, especially for medical images. Many neural network models have been introduced in the last decade bringing the automated segmentation accuracy close to manual segmentation. However, cutting-edge models like Transformer-based architectures rely on large scale annotated training data, and are generally designed with densely consecutive layers in the encoder, decoder, and skip connections resulting in large number of parameters. Additionally, for better performance, they often be pretrained on a larger data, thus requiring large memory size and increasing resource expenses. In this study, we propose a new lightweight but efficient model, namely LiteNeXt, based on convolutions and mixing modules with simplified decoder, for medical image segmentation. The model is trained from scratch with small amount of parameters (0.71M) and Giga Floating Point Operations Per Second (0.42). To handle boundary fuzzy as well as occlusion or clutter in objects especially in medical image regions, we propose the Marginal Weight Loss that can help effectively determine the marginal boundary between object and background. Furthermore, we propose the Self-embedding Representation Parallel technique, that can help augment the data in a self-learning manner. Experiments on public datasets including Data Science Bowls, GlaS, ISIC2018, PH2, and Sunnybrook data show promising results compared to other state-of-the-art CNN-based and Transformer-based architectures. Our code will be published at: https://github.com/tranngocduvnvp/LiteNeXt.
Related papers
- Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain [48.440691680864745]
We introduce a new neural network architecture, termed LoGoNet, with a tailored self-supervised learning (SSL) method.
LoGoNet integrates a novel feature extractor within a U-shaped architecture, leveraging Large Kernel Attention (LKA) and a dual encoding strategy.
We propose a novel SSL method tailored for 3D images to compensate for the lack of large labeled datasets.
arXiv Detail & Related papers (2024-02-09T05:06:58Z) - PMFSNet: Polarized Multi-scale Feature Self-attention Network For
Lightweight Medical Image Segmentation [6.134314911212846]
Current state-of-the-art medical image segmentation methods prioritize accuracy but often at the expense of increased computational demands and larger model sizes.
We propose PMFSNet, a novel medical imaging segmentation model that balances global local feature processing while avoiding computational redundancy.
It incorporates a plug-and-play PMFS block, a multi-scale feature enhancement module based on attention mechanisms, to capture long-term dependencies.
arXiv Detail & Related papers (2024-01-15T10:26:47Z) - Dataset Quantization [72.61936019738076]
We present dataset quantization (DQ), a new framework to compress large-scale datasets into small subsets.
DQ is the first method that can successfully distill large-scale datasets such as ImageNet-1k with a state-of-the-art compression ratio.
arXiv Detail & Related papers (2023-08-21T07:24:29Z) - DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion
Models [61.906934570771256]
We present a generic dataset generation model that can produce diverse synthetic images and perception annotations.
Our method builds upon the pre-trained diffusion model and extends text-guided image synthesis to perception data generation.
We show that the rich latent code of the diffusion model can be effectively decoded as accurate perception annotations using a decoder module.
arXiv Detail & Related papers (2023-08-11T14:38:11Z) - Large-Margin Representation Learning for Texture Classification [67.94823375350433]
This paper presents a novel approach combining convolutional layers (CLs) and large-margin metric learning for training supervised models on small datasets for texture classification.
The experimental results on texture and histopathologic image datasets have shown that the proposed approach achieves competitive accuracy with lower computational cost and faster convergence when compared to equivalent CNNs.
arXiv Detail & Related papers (2022-06-17T04:07:45Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - On the Texture Bias for Few-Shot CNN Segmentation [21.349705243254423]
Convolutional Neural Networks (CNNs) are driven by shapes to perform visual recognition tasks.
Recent evidence suggests texture bias in CNNs provides higher performing models when learning on large labeled training datasets.
We propose a novel architecture that integrates a set of Difference of Gaussians (DoG) to attenuate high-frequency local components in the feature space.
arXiv Detail & Related papers (2020-03-09T11:55:47Z) - Learning Fast and Robust Target Models for Video Object Segmentation [83.3382606349118]
Video object segmentation (VOS) is a highly challenging problem since the initial mask, defining the target object, is only given at test-time.
Most previous approaches fine-tune segmentation networks on the first frame, resulting in impractical frame-rates and risk of overfitting.
We propose a novel VOS architecture consisting of two network components.
arXiv Detail & Related papers (2020-02-27T21:58:06Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.