TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation
- URL: http://arxiv.org/abs/2409.03367v1
- Date: Thu, 5 Sep 2024 09:14:03 GMT
- Title: TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation
- Authors: Shahzaib Iqbal, Tariq M. Khan, Syed S. Naqvi, Asim Naveed, Erik Meijering,
- Abstract summary: We introduce a novel deep learning architecture for medical image segmentation.
Our proposed model shows consistent improvement over the state of the art on ten publicly available datasets.
- Score: 6.013821375459473
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has shown great potential for automated medical image segmentation to improve the precision and speed of disease diagnostics. However, the task presents significant difficulties due to variations in the scale, shape, texture, and contrast of the pathologies. Traditional convolutional neural network (CNN) models have certain limitations when it comes to effectively modelling multiscale context information and facilitating information interaction between skip connections across levels. To overcome these limitations, a novel deep learning architecture is introduced for medical image segmentation, taking advantage of CNNs and vision transformers. Our proposed model, named TBConvL-Net, involves a hybrid network that combines the local features of a CNN encoder-decoder architecture with long-range and temporal dependencies using biconvolutional long-short-term memory (LSTM) networks and vision transformers (ViT). This enables the model to capture contextual channel relationships in the data and account for the uncertainty of segmentation over time. Additionally, we introduce a novel composite loss function that considers both the segmentation robustness and the boundary agreement of the predicted output with the gold standard. Our proposed model shows consistent improvement over the state of the art on ten publicly available datasets of seven different medical imaging modalities.
Related papers
- Med-TTT: Vision Test-Time Training model for Medical Image Segmentation [5.318153305245246]
We propose Med-TTT, a visual backbone network integrated with Test-Time Training layers.
The model achieves leading performance in terms of accuracy, sensitivity, and Dice coefficient.
arXiv Detail & Related papers (2024-10-03T14:29:46Z) - Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain [48.440691680864745]
We introduce a new neural network architecture, termed LoGoNet, with a tailored self-supervised learning (SSL) method.
LoGoNet integrates a novel feature extractor within a U-shaped architecture, leveraging Large Kernel Attention (LKA) and a dual encoding strategy.
We propose a novel SSL method tailored for 3D images to compensate for the lack of large labeled datasets.
arXiv Detail & Related papers (2024-02-09T05:06:58Z) - Transformer-CNN Fused Architecture for Enhanced Skin Lesion Segmentation [0.0]
convolutional neural networks (CNNs) have greatly advanced medical image segmentation.
CNNs have been found to struggle with learning long-range dependencies and capturing global context.
We propose a hybrid architecture that combines the ability of transformers to capture global dependencies with the ability of CNNs to capture low-level spatial details.
arXiv Detail & Related papers (2024-01-10T18:36:14Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
We propose a simple yet effective UNet-Transformer (seUNet-Trans) model for medical image segmentation.
In our approach, the UNet model is designed as a feature extractor to generate multiple feature maps from the input images.
By leveraging the UNet architecture and the self-attention mechanism, our model not only retains the preservation of both local and global context information but also is capable of capturing long-range dependencies between input elements.
arXiv Detail & Related papers (2023-10-16T01:13:38Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Video-TransUNet: Temporally Blended Vision Transformer for CT VFSS
Instance Segmentation [11.575821326313607]
We propose Video-TransUNet, a deep architecture for segmentation in medical CT videos constructed by integrating temporal feature blending into the TransUNet deep learning framework.
In particular, our approach amalgamates strong frame representation via a ResNet CNN backbone, multi-frame feature blending via a Temporal Context Module, and reconstructive capabilities for multiple targets via a UNet-based convolutional-deconal architecture with multiple heads.
arXiv Detail & Related papers (2022-08-17T14:28:58Z) - TransAttUnet: Multi-level Attention-guided U-Net with Transformer for
Medical Image Segmentation [33.45471457058221]
This paper proposes a novel Transformer based medical image semantic segmentation framework called TransAttUnet.
In particular, we establish additional multi-scale skip connections between decoder blocks to aggregate the different semantic-scale upsampling features.
Our method consistently outperforms the state-of-the-art baselines.
arXiv Detail & Related papers (2021-07-12T09:17:06Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.