論文の概要: Learning the Language of Protein Structure
- arxiv url: http://arxiv.org/abs/2405.15840v1
- Date: Fri, 24 May 2024 16:03:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 02:29:48.147943
- Title: Learning the Language of Protein Structure
- Title(参考訳): タンパク質構造言語を学ぶ
- Authors: Benoit Gaujac, Jérémie Donà, Liviu Copoiu, Timothy Atkinson, Thomas Pierrot, Thomas D. Barrett,
- Abstract要約: 本稿では,タンパク質構造を離散表現に効果的にトークン化するベクトル量子化オートエンコーダを用いたアプローチを提案する。
学習した表現の有効性を示すために、コードブック上でトレーニングされた単純なGPTモデルにより、新規で多様性があり、設計可能なタンパク質構造を生成することができることを示す。
- 参考スコア(独自算出の注目度): 8.364087723533537
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Representation learning and \emph{de novo} generation of proteins are pivotal computational biology tasks. Whilst natural language processing (NLP) techniques have proven highly effective for protein sequence modelling, structure modelling presents a complex challenge, primarily due to its continuous and three-dimensional nature. Motivated by this discrepancy, we introduce an approach using a vector-quantized autoencoder that effectively tokenizes protein structures into discrete representations. This method transforms the continuous, complex space of protein structures into a manageable, discrete format with a codebook ranging from 4096 to 64000 tokens, achieving high-fidelity reconstructions with backbone root mean square deviations (RMSD) of approximately 1-5 \AA. To demonstrate the efficacy of our learned representations, we show that a simple GPT model trained on our codebooks can generate novel, diverse, and designable protein structures. Our approach not only provides representations of protein structure, but also mitigates the challenges of disparate modal representations and sets a foundation for seamless, multi-modal integration, enhancing the capabilities of computational methods in protein design.
- Abstract(参考訳): 表現学習と「emph{de novo}」タンパク質の生成は、重要な計算生物学の課題である。
自然言語処理(NLP)技術はタンパク質配列モデリングに非常に効果的であることが証明されているが、構造モデリングは、主に連続的かつ三次元的な性質のために複雑な課題を呈している。
この相違を動機として,タンパク質構造を離散表現に効果的にトークン化するベクトル量子化オートエンコーダを用いたアプローチを導入する。
この方法は、タンパク質構造の連続的で複雑な空間を、4096から64000トークンのコードブックで管理可能な離散形式に変換し、約1-5 \AAの背骨の平均平方偏差(RMSD)で高忠実な再構成を実現する。
学習した表現の有効性を示すために、コードブック上でトレーニングされた単純なGPTモデルにより、新規で多様性があり、設計可能なタンパク質構造を生成することができることを示す。
我々のアプローチはタンパク質構造の表現を提供するだけでなく、異なるモーダル表現の課題を緩和し、シームレスでマルチモーダルな統合の基礎を築き、タンパク質設計における計算手法の能力を高める。
関連論文リスト
- Multi-Scale Representation Learning for Protein Fitness Prediction [31.735234482320283]
これまでの手法は主に、巨大でラベルなしのタンパク質配列や構造データセットに基づいて訓練された自己教師型モデルに依存してきた。
本稿では,タンパク質の機能を統合する新しいマルチモーダル表現学習フレームワークであるSequence-Structure-Surface Fitness (S3F)モデルを紹介する。
提案手法は,タンパク質言語モデルからの配列表現と,タンパク質のバックボーンと詳細な表面トポロジーをコードするGeometric Vector Perceptronネットワークを組み合わせる。
論文 参考訳(メタデータ) (2024-12-02T04:28:10Z) - FoldToken: Learning Protein Language via Vector Quantization and Beyond [56.19308144551836]
タンパク質配列構造を離散シンボルとして表現するために textbfFoldTokenizer を導入する。
学習したシンボルを textbfFoldToken と呼び、FoldToken の配列が新しいタンパク質言語として機能する。
論文 参考訳(メタデータ) (2024-02-04T12:18:51Z) - Endowing Protein Language Models with Structural Knowledge [5.587293092389789]
本稿では,タンパク質構造データを統合することにより,タンパク質言語モデルを強化する新しいフレームワークを提案する。
PST(Protein Structure Transformer)と呼ばれる精製モデルは、小さなタンパク質構造データベース上でさらに事前訓練されている。
PSTは、タンパク質配列の最先端基盤モデルであるESM-2を一貫して上回り、タンパク質機能予測の新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2024-01-26T12:47:54Z) - xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering the Language of Protein [74.64101864289572]
本稿では,タンパク質の理解と生成を同時に行うために,統一されたタンパク質言語モデル xTrimoPGLM を提案する。
xTrimoPGLMは、4つのカテゴリにわたる18のタンパク質理解ベンチマークにおいて、他の高度なベースラインを著しく上回っている。
また、自然の原理に従ってデノボタンパク質配列を生成でき、微調整を監督した後にプログラム可能な生成を行うことができる。
論文 参考訳(メタデータ) (2024-01-11T15:03:17Z) - A Systematic Study of Joint Representation Learning on Protein Sequences
and Structures [38.94729758958265]
効果的なタンパク質表現の学習は、タンパク質機能の予測のような生物学の様々なタスクにおいて重要である。
近年, タンパク質言語モデル(PLM)に基づく配列表現学習法は, 配列ベースタスクでは優れているが, タンパク質構造に関わるタスクへの直接適応は依然として困難である。
本研究は、最先端のPLMと異なる構造エンコーダを統合することで、結合タンパク質表現学習の包括的研究を行う。
論文 参考訳(メタデータ) (2023-03-11T01:24:10Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
配列ベースタンパク質言語モデル(pLM)の汎用的手法であるLM-Designを提案する。
pLMに軽量な構造アダプターを埋め込んだ構造手術を行い,構造意識を付加した構造手術を行った。
実験の結果,我々の手法は最先端の手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-03T10:49:52Z) - Integration of Pre-trained Protein Language Models into Geometric Deep
Learning Networks [68.90692290665648]
我々は、タンパク質言語モデルから学んだ知識を、いくつかの最先端の幾何学的ネットワークに統合する。
以上の結果から,ベースラインを20%上回る総合的な改善が見られた。
強い証拠は、タンパク質言語モデルの知識を取り入れることで、幾何学的ネットワークの能力が著しく向上することを示している。
論文 参考訳(メタデータ) (2022-12-07T04:04:04Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。