論文の概要: Achieving Dimension-Free Communication in Federated Learning via Zeroth-Order Optimization
- arxiv url: http://arxiv.org/abs/2405.15861v2
- Date: Mon, 24 Jun 2024 04:52:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 00:43:06.844158
- Title: Achieving Dimension-Free Communication in Federated Learning via Zeroth-Order Optimization
- Title(参考訳): ゼロ次最適化によるフェデレーション学習における次元自由通信の実現
- Authors: Zhe Li, Bicheng Ying, Zidong Liu, Haibo Yang,
- Abstract要約: Federated Learning (FL)は、コラボレーションとプライバシ保護の機械学習のための有望なフレームワークを提供する。
FLとのかなりの通信コストは、その効率に重大な課題をもたらす。
本稿では,ゼロオーダー最適化技術を活用したFLのための新しい自由通信方式を提案する。
- 参考スコア(独自算出の注目度): 9.035576658491534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) offers a promising framework for collaborative and privacy-preserving machine learning across distributed data sources. However, the substantial communication costs associated with FL pose a significant challenge to its efficiency. Specifically, in each communication round, the communication costs scale linearly with the model's dimension, which presents a formidable obstacle, especially in large model scenarios. Despite various communication efficient strategies, the intrinsic dimension-dependent communication cost remains a major bottleneck for current FL implementations. In this paper, we introduce a novel dimension-free communication strategy for FL, leveraging zero-order optimization techniques. We propose a new algorithm, FedDisco, which facilitates the transmission of only a constant number of scalar values between clients and the server in each communication round, thereby reducing the communication cost from $\mathscr{O}(d)$ to $\mathscr{O}(1)$, where $d$ is the dimension of the model parameters. Theoretically, in non-convex functions, we prove that our algorithm achieves state-of-the-art rates, which show a linear speedup of the number of clients and local steps under standard assumptions and dimension-free rate for low effective rank scenarios. Empirical evaluations through classic deep learning training and large language model fine-tuning substantiate significant reductions in communication overhead compared to traditional FL approaches. Our code is available at https://github.com/ZidongLiu/FedDisco.
- Abstract(参考訳): Federated Learning (FL)は、分散データソース間の協調的およびプライバシ保護機械学習のための有望なフレームワークを提供する。
しかし、FLに関連するかなりの通信コストは、その効率に重大な課題をもたらす。
具体的には、各通信ラウンドにおいて、通信コストはモデルの次元と線形にスケールする。
様々な通信効率の戦略にもかかわらず、本質的な次元に依存した通信コストは、現在のFL実装において大きなボトルネックとなっている。
本稿では,ゼロオーダー最適化技術を活用したFLのための新しい次元自由通信方式を提案する。
本稿では,各通信ラウンドにおけるクライアントとサーバ間のスカラー値の一定数の送信を容易にし,通信コストを$\mathscr{O}(d)$から$\mathscr{O}(1)$に削減する新しいアルゴリズムであるFedDiscoを提案する。
理論的には、非凸関数では、我々のアルゴリズムが最先端の速度を達成することが証明され、これは標準的な仮定の下でのクライアント数とローカルステップの線形高速化と、低効率なランクシナリオに対する次元自由率を示す。
古典的深層学習訓練と大規模言語モデルによる経験的評価は,従来のFL手法と比較して,通信オーバーヘッドを大幅に削減する。
私たちのコードはhttps://github.com/ZidongLiu/FedDisco.comで入手可能です。
関連論文リスト
- FedScalar: A Communication efficient Federated Learning [0.0]
フェデレーテッド・ラーニング(FL)は分散機械学習でかなりの人気を集めている。
emphFedScalarは、エージェントが単一のスカラーを使用して更新を通信することを可能にする。
論文 参考訳(メタデータ) (2024-10-03T07:06:49Z) - SpaFL: Communication-Efficient Federated Learning with Sparse Models and Low computational Overhead [75.87007729801304]
SpaFL: 計算オーバーヘッドの少ないスパースモデル構造を最適化する通信効率のよいFLフレームワークを提案する。
プルーニングプロセス自体を最適化するためには、パラメータの代わりにサーバとクライアントの間でしきい値だけが通信される。
グローバルしきい値は、集約されたパラメータの重要度を抽出することで、モデルパラメータの更新に使用される。
論文 参考訳(メタデータ) (2024-06-01T13:10:35Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated Learning(FL)は、さまざまなデータソース上のローカルデータを収集することなく、モデルトレーニングをターゲットとする機械学習パラダイムである。
単一のサーバを使用するStandard FLは、限られた数のユーザしかサポートできないため、学習能力の低下につながる。
本研究では,多数のユーザに対応するために,emphConfederated Learning(CFL)と呼ばれるマルチサーバFLフレームワークを検討する。
論文 参考訳(メタデータ) (2024-02-28T03:27:10Z) - Fed-CVLC: Compressing Federated Learning Communications with
Variable-Length Codes [54.18186259484828]
フェデレートラーニング(FL)パラダイムでは、パラメータサーバ(PS)がモデル収集、更新アグリゲーション、複数のラウンドでのモデル分散のために、分散参加クライアントと同時通信する。
FLの圧縮には可変長が有用であることを示す。
本稿では,Fed-CVLC(Federated Learning Compression with Variable-Length Codes)を提案する。
論文 参考訳(メタデータ) (2024-02-06T07:25:21Z) - Federated Hyperdimensional Computing [14.844383542052169]
フェデレートラーニング(FL)は、参加するクライアントの緩やかなセットが、中央サーバによる調整を通じて、グローバルモデルを協調的に学習することを可能にする。
既存のFLアプローチは、ディープニューラルネットワーク(DNN)のような巨大なモデルを持つ複雑なアルゴリズムに依存している。
我々はまず,超次元コンピューティング(HDC)に基づくフェデレーション学習フレームワークであるFedHDCを提案する。
論文 参考訳(メタデータ) (2023-12-26T09:24:19Z) - DFedADMM: Dual Constraints Controlled Model Inconsistency for
Decentralized Federated Learning [52.83811558753284]
分散学習(DFL)は、中央サーバーを捨て、分散通信ネットワークを確立する。
既存のDFL手法は依然として、局所的な矛盾と局所的な過度なオーバーフィッティングという2つの大きな課題に悩まされている。
論文 参考訳(メタデータ) (2023-08-16T11:22:36Z) - OFedQIT: Communication-Efficient Online Federated Learning via
Quantization and Intermittent Transmission [7.6058140480517356]
オンライン連合学習(OFL)は、分散ストリーミングデータから非線形関数(またはモデル)のシーケンスを協調的に学習する、有望なフレームワークである。
本稿では、量子化と断続伝送を用いた通信効率の高いOFLアルゴリズム(OFedQIT)を提案する。
分析の結果,OfedQITは優れた学習精度を維持しつつ,OfedAvgの欠点に対処できることがわかった。
論文 参考訳(メタデータ) (2022-05-13T07:46:43Z) - A Newton-type algorithm for federated learning based on incremental
Hessian eigenvector sharing [5.404315085380945]
我々は、フェデレートラーニング(FL)を高速化するために設計された、通信制約付きニュートン型(NT)アルゴリズムを提案する。
提案手法は実際のデータセットで完全に検証される。
論文 参考訳(メタデータ) (2022-02-11T17:52:56Z) - ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training [65.68511423300812]
本稿では,効率的なフェデレート学習のためのプログレッシブトレーニングフレームワークであるProgFedを提案する。
ProgFedは計算と双方向通信のコストを本質的に低減し、最終モデルの強力な性能を維持している。
以上の結果から, ProgFed はフルモデルの標準トレーニングと同等の速度で収束することがわかった。
論文 参考訳(メタデータ) (2021-10-11T14:45:00Z) - STEM: A Stochastic Two-Sided Momentum Algorithm Achieving Near-Optimal
Sample and Communication Complexities for Federated Learning [58.6792963686231]
フェデレートラーニング(FL)とは、複数のワーカノード(WN)がローカルデータを用いてジョイントモデルを構築するパラダイムを指す。
WNの最小更新方向、最初のミニバッチサイズ、ローカル更新頻度をどうやって選択するかは明らかになっていない。
局所的な更新頻度と局所的なミニサイズとの間にはトレードオフ曲線があることを示し、上記の複雑さを維持できることを示す。
論文 参考訳(メタデータ) (2021-06-19T06:13:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。