論文の概要: Achieving Dimension-Free Communication in Federated Learning via Zeroth-Order Optimization
- arxiv url: http://arxiv.org/abs/2405.15861v2
- Date: Mon, 24 Jun 2024 04:52:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 00:43:06.844158
- Title: Achieving Dimension-Free Communication in Federated Learning via Zeroth-Order Optimization
- Title(参考訳): ゼロ次最適化によるフェデレーション学習における次元自由通信の実現
- Authors: Zhe Li, Bicheng Ying, Zidong Liu, Haibo Yang,
- Abstract要約: Federated Learning (FL)は、コラボレーションとプライバシ保護の機械学習のための有望なフレームワークを提供する。
FLとのかなりの通信コストは、その効率に重大な課題をもたらす。
本稿では,ゼロオーダー最適化技術を活用したFLのための新しい自由通信方式を提案する。
- 参考スコア(独自算出の注目度): 9.035576658491534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) offers a promising framework for collaborative and privacy-preserving machine learning across distributed data sources. However, the substantial communication costs associated with FL pose a significant challenge to its efficiency. Specifically, in each communication round, the communication costs scale linearly with the model's dimension, which presents a formidable obstacle, especially in large model scenarios. Despite various communication efficient strategies, the intrinsic dimension-dependent communication cost remains a major bottleneck for current FL implementations. In this paper, we introduce a novel dimension-free communication strategy for FL, leveraging zero-order optimization techniques. We propose a new algorithm, FedDisco, which facilitates the transmission of only a constant number of scalar values between clients and the server in each communication round, thereby reducing the communication cost from $\mathscr{O}(d)$ to $\mathscr{O}(1)$, where $d$ is the dimension of the model parameters. Theoretically, in non-convex functions, we prove that our algorithm achieves state-of-the-art rates, which show a linear speedup of the number of clients and local steps under standard assumptions and dimension-free rate for low effective rank scenarios. Empirical evaluations through classic deep learning training and large language model fine-tuning substantiate significant reductions in communication overhead compared to traditional FL approaches. Our code is available at https://github.com/ZidongLiu/FedDisco.
- Abstract(参考訳): Federated Learning (FL)は、分散データソース間の協調的およびプライバシ保護機械学習のための有望なフレームワークを提供する。
しかし、FLに関連するかなりの通信コストは、その効率に重大な課題をもたらす。
具体的には、各通信ラウンドにおいて、通信コストはモデルの次元と線形にスケールする。
様々な通信効率の戦略にもかかわらず、本質的な次元に依存した通信コストは、現在のFL実装において大きなボトルネックとなっている。
本稿では,ゼロオーダー最適化技術を活用したFLのための新しい次元自由通信方式を提案する。
本稿では,各通信ラウンドにおけるクライアントとサーバ間のスカラー値の一定数の送信を容易にし,通信コストを$\mathscr{O}(d)$から$\mathscr{O}(1)$に削減する新しいアルゴリズムであるFedDiscoを提案する。
理論的には、非凸関数では、我々のアルゴリズムが最先端の速度を達成することが証明され、これは標準的な仮定の下でのクライアント数とローカルステップの線形高速化と、低効率なランクシナリオに対する次元自由率を示す。
古典的深層学習訓練と大規模言語モデルによる経験的評価は,従来のFL手法と比較して,通信オーバーヘッドを大幅に削減する。
私たちのコードはhttps://github.com/ZidongLiu/FedDisco.comで入手可能です。
関連論文リスト
- SpaFL: Communication-Efficient Federated Learning with Sparse Models and Low computational Overhead [75.87007729801304]
SpaFL: 計算オーバーヘッドの少ないスパースモデル構造を最適化する通信効率のよいFLフレームワークを提案する。
実験により、スパースベースラインに比べて通信やコンピューティングリソースをはるかに少なくし、精度を向上することが示された。
論文 参考訳(メタデータ) (2024-06-01T13:10:35Z) - FedComLoc: Communication-Efficient Distributed Training of Sparse and Quantized Models [56.21666819468249]
フェデレートラーニング(FL)は、異種クライアントがローカルにプライベートデータを処理し、中央サーバーと対話できるというユニークな特徴から、注目を集めている。
我々は,emphScaffnewに実用的で効果的な圧縮を統合し,通信効率を向上するFedComLocを紹介した。
論文 参考訳(メタデータ) (2024-03-14T22:29:59Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated Learning(FL)は、さまざまなデータソース上のローカルデータを収集することなく、モデルトレーニングをターゲットとする機械学習パラダイムである。
単一のサーバを使用するStandard FLは、限られた数のユーザしかサポートできないため、学習能力の低下につながる。
本研究では,多数のユーザに対応するために,emphConfederated Learning(CFL)と呼ばれるマルチサーバFLフレームワークを検討する。
論文 参考訳(メタデータ) (2024-02-28T03:27:10Z) - Fed-CVLC: Compressing Federated Learning Communications with
Variable-Length Codes [54.18186259484828]
フェデレートラーニング(FL)パラダイムでは、パラメータサーバ(PS)がモデル収集、更新アグリゲーション、複数のラウンドでのモデル分散のために、分散参加クライアントと同時通信する。
FLの圧縮には可変長が有用であることを示す。
本稿では,Fed-CVLC(Federated Learning Compression with Variable-Length Codes)を提案する。
論文 参考訳(メタデータ) (2024-02-06T07:25:21Z) - Federated Hyperdimensional Computing [14.844383542052169]
フェデレートラーニング(FL)は、参加するクライアントの緩やかなセットが、中央サーバによる調整を通じて、グローバルモデルを協調的に学習することを可能にする。
既存のFLアプローチは、ディープニューラルネットワーク(DNN)のような巨大なモデルを持つ複雑なアルゴリズムに依存している。
我々はまず,超次元コンピューティング(HDC)に基づくフェデレーション学習フレームワークであるFedHDCを提案する。
論文 参考訳(メタデータ) (2023-12-26T09:24:19Z) - User-Centric Federated Learning: Trading off Wireless Resources for
Personalization [18.38078866145659]
フェデレートラーニング(FL)システムでは、統計的不均一性はアルゴリズム収束時間を増やし、一般化性能を低下させる。
FLが課すプライバシー制約に違反することなく、上記の問題に対処するためには、パーソナライズされたFLメソッドは、データに直接アクセスすることなく、統計的に類似したクライアントを結合する必要がある。
本研究では,容易に利用できる勾配情報に基づいて,FLクライアント毎にパーソナライズされたモデルを生成可能なユーザ中心集約ルールを設計する。
提案アルゴリズムは,平均精度,ノード性能,通信オーバヘッドの訓練において,パーソナライズされたFLベースラインを上回っている。
論文 参考訳(メタデータ) (2023-04-25T15:45:37Z) - OFedQIT: Communication-Efficient Online Federated Learning via
Quantization and Intermittent Transmission [7.6058140480517356]
オンライン連合学習(OFL)は、分散ストリーミングデータから非線形関数(またはモデル)のシーケンスを協調的に学習する、有望なフレームワークである。
本稿では、量子化と断続伝送を用いた通信効率の高いOFLアルゴリズム(OFedQIT)を提案する。
分析の結果,OfedQITは優れた学習精度を維持しつつ,OfedAvgの欠点に対処できることがわかった。
論文 参考訳(メタデータ) (2022-05-13T07:46:43Z) - A Newton-type algorithm for federated learning based on incremental
Hessian eigenvector sharing [5.404315085380945]
我々は、フェデレートラーニング(FL)を高速化するために設計された、通信制約付きニュートン型(NT)アルゴリズムを提案する。
提案手法は実際のデータセットで完全に検証される。
論文 参考訳(メタデータ) (2022-02-11T17:52:56Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
フェデレーション学習は、これらのクライアントのローカルデータを中央サーバに転送することなく、クライアント間での学習を促進する。
圧縮勾配降下のための非線形量子化を提案し、フェデレーションラーニングで容易に利用することができる。
本システムは,訓練過程の収束と精度を維持しつつ,通信コストを最大3桁まで削減する。
論文 参考訳(メタデータ) (2020-12-15T12:20:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。