Achieving Dimension-Free Communication in Federated Learning via Zeroth-Order Optimization
- URL: http://arxiv.org/abs/2405.15861v3
- Date: Fri, 27 Sep 2024 04:43:20 GMT
- Title: Achieving Dimension-Free Communication in Federated Learning via Zeroth-Order Optimization
- Authors: Zhe Li, Bicheng Ying, Zidong Liu, Chaosheng Dong, Haibo Yang,
- Abstract summary: This paper presents a novel communication algorithm -- DeComFL, which reduces the communication cost from $mathscrO(d)$ to $mathscrO(1)$ by transmitting only a constant number of scalar values between clients.
Empirical evaluations, encompassing both classic deep learning training and large language model fine-tuning, demonstrate significant reductions in communication overhead.
- Score: 15.73877955614998
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) offers a promising framework for collaborative and privacy-preserving machine learning across distributed data sources. However, the substantial communication costs associated with FL significantly challenge its efficiency. Specifically, in each communication round, the communication costs scale linearly with the model's dimension, which presents a formidable obstacle, especially in large model scenarios. Despite various communication-efficient strategies, the intrinsic dimension-dependent communication cost remains a major bottleneck for current FL implementations. This paper proposes a novel dimension-free communication algorithm -- DeComFL, which leverages the zeroth-order optimization techniques and reduces the communication cost from $\mathscr{O}(d)$ to $\mathscr{O}(1)$ by transmitting only a constant number of scalar values between clients and the server in each round, regardless of the dimension $d$ of the model parameters. Theoretically, in non-convex functions, we prove that our algorithm achieves state-of-the-art rates, which show a linear speedup of the number of clients and local steps under standard assumptions. With additional low effective rank assumption, we can further show the convergence rate is independent of the model dimension $d$ as well. Empirical evaluations, encompassing both classic deep learning training and large language model fine-tuning, demonstrate significant reductions in communication overhead. Notably, DeComFL achieves this by transmitting only around 1MB of data in total between the server and a client to fine-tune a model with billions of parameters.
Related papers
- SpaFL: Communication-Efficient Federated Learning with Sparse Models and Low computational Overhead [75.87007729801304]
SpaFL: a communication-efficient FL framework is proposed to optimize sparse model structures with low computational overhead.
Experiments show that SpaFL improves accuracy while requiring much less communication and computing resources compared to sparse baselines.
arXiv Detail & Related papers (2024-06-01T13:10:35Z) - Fed-CVLC: Compressing Federated Learning Communications with
Variable-Length Codes [54.18186259484828]
In Federated Learning (FL) paradigm, a parameter server (PS) concurrently communicates with distributed participating clients for model collection, update aggregation, and model distribution over multiple rounds.
We show strong evidences that variable-length is beneficial for compression in FL.
We present Fed-CVLC (Federated Learning Compression with Variable-Length Codes), which fine-tunes the code length in response to the dynamics of model updates.
arXiv Detail & Related papers (2024-02-06T07:25:21Z) - Federated Hyperdimensional Computing [14.844383542052169]
Federated learning (FL) enables a loose set of participating clients to collaboratively learn a global model via coordination by a central server.
Existing FL approaches rely on complex algorithms with massive models, such as deep neural networks (DNNs)
We first propose FedHDC, a federated learning framework based on hyperdimensional computing (HDC)
arXiv Detail & Related papers (2023-12-26T09:24:19Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Communication and Storage Efficient Federated Split Learning [19.369076939064904]
Federated Split Learning preserves the parallel model training principle of FL.
Server has to maintain separate models for every client, resulting in a significant computation and storage requirement.
This paper proposes a communication and storage efficient federated and split learning strategy.
arXiv Detail & Related papers (2023-02-11T04:44:29Z) - Fundamental Limits of Communication Efficiency for Model Aggregation in
Distributed Learning: A Rate-Distortion Approach [54.311495894129585]
We study the limit of communication cost of model aggregation in distributed learning from a rate-distortion perspective.
It is found that the communication gain by exploiting the correlation between worker nodes is significant for SignSGD.
arXiv Detail & Related papers (2022-06-28T13:10:40Z) - OFedQIT: Communication-Efficient Online Federated Learning via
Quantization and Intermittent Transmission [7.6058140480517356]
Online federated learning (OFL) is a promising framework to collaboratively learn a sequence of non-linear functions (or models) from distributed streaming data.
We propose a communication-efficient OFL algorithm (named OFedQIT) by means of a quantization and an intermittent transmission.
Our analysis reveals that OFedQIT successfully addresses the drawbacks of OFedAvg while maintaining superior learning accuracy.
arXiv Detail & Related papers (2022-05-13T07:46:43Z) - A Newton-type algorithm for federated learning based on incremental
Hessian eigenvector sharing [5.404315085380945]
We present an original communication-constrained Newton-type (NT) algorithm designed to accelerate Federated Learning (FL)
The proposed solution is thoroughly validated on real datasets.
arXiv Detail & Related papers (2022-02-11T17:52:56Z) - FedKD: Communication Efficient Federated Learning via Knowledge
Distillation [56.886414139084216]
Federated learning is widely used to learn intelligent models from decentralized data.
In federated learning, clients need to communicate their local model updates in each iteration of model learning.
We propose a communication efficient federated learning method based on knowledge distillation.
arXiv Detail & Related papers (2021-08-30T15:39:54Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.