Fed-CVLC: Compressing Federated Learning Communications with
Variable-Length Codes
- URL: http://arxiv.org/abs/2402.03770v1
- Date: Tue, 6 Feb 2024 07:25:21 GMT
- Title: Fed-CVLC: Compressing Federated Learning Communications with
Variable-Length Codes
- Authors: Xiaoxin Su, Yipeng Zhou, Laizhong Cui, John C.S. Lui and Jiangchuan
Liu
- Abstract summary: In Federated Learning (FL) paradigm, a parameter server (PS) concurrently communicates with distributed participating clients for model collection, update aggregation, and model distribution over multiple rounds.
We show strong evidences that variable-length is beneficial for compression in FL.
We present Fed-CVLC (Federated Learning Compression with Variable-Length Codes), which fine-tunes the code length in response to the dynamics of model updates.
- Score: 54.18186259484828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Federated Learning (FL) paradigm, a parameter server (PS) concurrently
communicates with distributed participating clients for model collection,
update aggregation, and model distribution over multiple rounds, without
touching private data owned by individual clients. FL is appealing in
preserving data privacy; yet the communication between the PS and scattered
clients can be a severe bottleneck. Model compression algorithms, such as
quantization and sparsification, have been suggested but they generally assume
a fixed code length, which does not reflect the heterogeneity and variability
of model updates. In this paper, through both analysis and experiments, we show
strong evidences that variable-length is beneficial for compression in FL. We
accordingly present Fed-CVLC (Federated Learning Compression with
Variable-Length Codes), which fine-tunes the code length in response of the
dynamics of model updates. We develop optimal tuning strategy that minimizes
the loss function (equivalent to maximizing the model utility) subject to the
budget for communication. We further demonstrate that Fed-CVLC is indeed a
general compression design that bridges quantization and sparsification, with
greater flexibility. Extensive experiments have been conducted with public
datasets to demonstrate that Fed-CVLC remarkably outperforms state-of-the-art
baselines, improving model utility by 1.50%-5.44%, or shrinking communication
traffic by 16.67%-41.61%.
Related papers
- Lightweight Industrial Cohorted Federated Learning for Heterogeneous Assets [0.0]
Federated Learning (FL) is the most widely adopted collaborative learning approach for training decentralized Machine Learning (ML) models.
However, since great data similarity or homogeneity is taken for granted in all FL tasks, FL is still not specifically designed for the industrial setting.
We propose a Lightweight Industrial Cohorted FL (LICFL) algorithm that uses model parameters for cohorting without any additional on-edge (clientlevel) computations and communications.
arXiv Detail & Related papers (2024-07-25T12:48:56Z) - Efficient Model Compression for Hierarchical Federated Learning [10.37403547348343]
Federated learning (FL) has garnered significant attention due to its capacity to preserve privacy within distributed learning systems.
This paper introduces a novel hierarchical FL framework that integrates the benefits of clustered FL and model compression.
arXiv Detail & Related papers (2024-05-27T12:17:47Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - FedCliP: Federated Learning with Client Pruning [3.796320380104124]
Federated learning (FL) is a newly emerging distributed learning paradigm.
One fundamental bottleneck in FL is the heavy communication overheads between the distributed clients and the central server.
We propose FedCliP, the first communication efficient FL training framework from a macro perspective.
arXiv Detail & Related papers (2023-01-17T09:15:37Z) - Adaptive Control of Client Selection and Gradient Compression for
Efficient Federated Learning [28.185096784982544]
Federated learning (FL) allows multiple clients cooperatively train models without disclosing local data.
We propose a heterogeneous-aware FL framework, called FedCG, with adaptive client selection and gradient compression.
Experiments on both real-world prototypes and simulations show that FedCG can provide up to 5.3$times$ speedup compared to other methods.
arXiv Detail & Related papers (2022-12-19T14:19:07Z) - Optimizing the Communication-Accuracy Trade-off in Federated Learning
with Rate-Distortion Theory [1.5771347525430772]
A significant bottleneck in federated learning is the network communication cost of sending model updates from client devices to the central server.
Our method encodes quantized updates with an appropriate universal code, taking into account their empirical distribution.
Because quantization introduces error, we select quantization levels by optimizing for the desired trade-off in average total gradient and distortion.
arXiv Detail & Related papers (2022-01-07T20:17:33Z) - Over-the-Air Federated Learning from Heterogeneous Data [107.05618009955094]
Federated learning (FL) is a framework for distributed learning of centralized models.
We develop a Convergent OTA FL (COTAF) algorithm which enhances the common local gradient descent (SGD) FL algorithm.
We numerically show that the precoding induced by COTAF notably improves the convergence rate and the accuracy of models trained via OTA FL.
arXiv Detail & Related papers (2020-09-27T08:28:25Z) - UVeQFed: Universal Vector Quantization for Federated Learning [179.06583469293386]
Federated learning (FL) is an emerging approach to train such learning models without requiring the users to share their possibly private labeled data.
In FL, each user trains its copy of the learning model locally. The server then collects the individual updates and aggregates them into a global model.
We show that combining universal vector quantization methods with FL yields a decentralized training system in which the compression of the trained models induces only a minimum distortion.
arXiv Detail & Related papers (2020-06-05T07:10:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.