HYSYNTH: Context-Free LLM Approximation for Guiding Program Synthesis
- URL: http://arxiv.org/abs/2405.15880v2
- Date: Fri, 01 Nov 2024 02:46:03 GMT
- Title: HYSYNTH: Context-Free LLM Approximation for Guiding Program Synthesis
- Authors: Shraddha Barke, Emmanuel Anaya Gonzalez, Saketh Ram Kasibatla, Taylor Berg-Kirkpatrick, Nadia Polikarpova,
- Abstract summary: Large language models (LLMs) often fail to produce fully correct programs in unfamiliar DSLs.
Motivated by these limitations, we introduce a hybrid approach, where LLM completions for a given task are used to learn a task-specific, context-free surrogate model.
We evaluate this hybrid approach on three domains, and show that it outperforms both unguided search and direct sampling from LLMs, as well as existing program synthesizers.
- Score: 25.260063704712458
- License:
- Abstract: Many structured prediction and reasoning tasks can be framed as program synthesis problems, where the goal is to generate a program in a domain-specific language (DSL) that transforms input data into the desired output. Unfortunately, purely neural approaches, such as large language models (LLMs), often fail to produce fully correct programs in unfamiliar DSLs, while purely symbolic methods based on combinatorial search scale poorly to complex problems. Motivated by these limitations, we introduce a hybrid approach, where LLM completions for a given task are used to learn a task-specific, context-free surrogate model, which is then used to guide program synthesis. We evaluate this hybrid approach on three domains, and show that it outperforms both unguided search and direct sampling from LLMs, as well as existing program synthesizers.
Related papers
- Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models [54.51932175059004]
We introduce a scalable method for generating synthetic instructions to enhance the code generation capability of Large Language Models.
The proposed algorithm, Genetic-Instruct, mimics evolutionary processes, utilizing self-instruction to create numerous synthetic samples from a limited number of seeds.
arXiv Detail & Related papers (2024-07-29T20:42:59Z) - Large Language Models are Interpretable Learners [53.56735770834617]
In this paper, we show a combination of Large Language Models (LLMs) and symbolic programs can bridge the gap between expressiveness and interpretability.
The pretrained LLM with natural language prompts provides a massive set of interpretable modules that can transform raw input into natural language concepts.
As the knowledge learned by LSP is a combination of natural language descriptions and symbolic rules, it is easily transferable to humans (interpretable) and other LLMs.
arXiv Detail & Related papers (2024-06-25T02:18:15Z) - Synthesizing Programmatic Reinforcement Learning Policies with Large Language Model Guided Search [7.769411917500852]
We introduce a novel LLM-guided search framework (LLM-GS)
Our key insight is to leverage the programming expertise and common sense reasoning of LLMs to enhance the efficiency of assumption-free, random-guessing search methods.
We develop a search algorithm named Scheduled Hill Climbing, designed to efficiently explore the programmatic search space to improve the programs consistently.
arXiv Detail & Related papers (2024-05-26T06:33:48Z) - Guiding Enumerative Program Synthesis with Large Language Models [15.500250058226474]
In this paper, we evaluate the abilities of Large Language Models to solve formal synthesis benchmarks.
When one-shot synthesis fails, we propose a novel enumerative synthesis algorithm.
We find that GPT-3.5 as a stand-alone tool for formal synthesis is easily outperformed by state-of-the-art formal synthesis algorithms.
arXiv Detail & Related papers (2024-03-06T19:13:53Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z) - Fully Autonomous Programming with Large Language Models [0.9558392439655015]
Current approaches to program synthesis with Large Language Models (LLMs) exhibit a "near miss syndrome"
We use OpenAI Codex as the LLM and Program Synthesis Benchmark 2 as a database of problem descriptions and tests for evaluation.
The resulting framework outperforms both conventional usage of Codex without the repair phase and traditional genetic programming approaches.
arXiv Detail & Related papers (2023-04-20T16:12:05Z) - Latent Execution for Neural Program Synthesis Beyond Domain-Specific
Languages [97.58968222942173]
We take the first step to synthesize C programs from input-output examples.
In particular, we propose La Synth, which learns the latent representation to approximate the execution of partially generated programs.
We show that training on these synthesized programs further improves the prediction performance for both Karel and C program synthesis.
arXiv Detail & Related papers (2021-06-29T02:21:32Z) - Optimal Neural Program Synthesis from Multimodal Specifications [45.35689345004124]
Multimodal program synthesis is an attractive way to scale program synthesis to challenging settings.
This paper proposes an optimal neural synthesis approach where the goal is to find a program that satisfies user-provided constraints.
arXiv Detail & Related papers (2020-10-04T20:51:21Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
We present a new synthesis approach that leverages learning to guide a bottom-up search over programs.
In particular, we train a model to prioritize compositions of intermediate values during search conditioned on a set of input-output examples.
We show that the combination of learning and bottom-up search is remarkably effective, even with simple supervised learning approaches.
arXiv Detail & Related papers (2020-07-28T17:46:18Z) - Towards Neural-Guided Program Synthesis for Linear Temporal Logic
Specifications [26.547133495699093]
We use a neural network to learn a Q-function that is then used to guide search, and to construct programs that are subsequently verified for correctness.
Our method is unique in combining search with deep learning to realize synthesis.
arXiv Detail & Related papers (2019-12-31T17:09:49Z) - Synthetic Datasets for Neural Program Synthesis [66.20924952964117]
We propose a new methodology for controlling and evaluating the bias of synthetic data distributions over both programs and specifications.
We demonstrate, using the Karel DSL and a small Calculator DSL, that training deep networks on these distributions leads to improved cross-distribution generalization performance.
arXiv Detail & Related papers (2019-12-27T21:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.