SymRTLO: Enhancing RTL Code Optimization with LLMs and Neuron-Inspired Symbolic Reasoning
- URL: http://arxiv.org/abs/2504.10369v1
- Date: Mon, 14 Apr 2025 16:15:55 GMT
- Title: SymRTLO: Enhancing RTL Code Optimization with LLMs and Neuron-Inspired Symbolic Reasoning
- Authors: Yiting Wang, Wanghao Ye, Ping Guo, Yexiao He, Ziyao Wang, Yexiao He, Bowei Tian, Shwai He, Guoheng Sun, Zheyu Shen, Sihan Chen, Ankur Srivastava, Qingfu Zhang, Gang Qu, Ang Li,
- Abstract summary: This paper presents SymRTLO, a novel neuron-symbolic RTL optimization framework.<n>A symbolic module is proposed for analyzing and optimizing finite state machine (FSM) logic.<n> Experiments on the RTL-Rewriter benchmark with Synopsys Design Compiler and Yosys show that SymRTLO improves power, performance, and area (PPA) by up to 43.9%, 62.5%, and 51.1%, respectively.
- Score: 18.40402135952776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimizing Register Transfer Level (RTL) code is crucial for improving the power, performance, and area (PPA) of digital circuits in the early stages of synthesis. Manual rewriting, guided by synthesis feedback, can yield high-quality results but is time-consuming and error-prone. Most existing compiler-based approaches have difficulty handling complex design constraints. Large Language Model (LLM)-based methods have emerged as a promising alternative to address these challenges. However, LLM-based approaches often face difficulties in ensuring alignment between the generated code and the provided prompts. This paper presents SymRTLO, a novel neuron-symbolic RTL optimization framework that seamlessly integrates LLM-based code rewriting with symbolic reasoning techniques. Our method incorporates a retrieval-augmented generation (RAG) system of optimization rules and Abstract Syntax Tree (AST)-based templates, enabling LLM-based rewriting that maintains syntactic correctness while minimizing undesired circuit behaviors. A symbolic module is proposed for analyzing and optimizing finite state machine (FSM) logic, allowing fine-grained state merging and partial specification handling beyond the scope of pattern-based compilers. Furthermore, a fast verification pipeline, combining formal equivalence checks with test-driven validation, further reduces the complexity of verification. Experiments on the RTL-Rewriter benchmark with Synopsys Design Compiler and Yosys show that SymRTLO improves power, performance, and area (PPA) by up to 43.9%, 62.5%, and 51.1%, respectively, compared to the state-of-the-art methods.
Related papers
- Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution [59.39066657300045]
Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps.
We propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths.
SoT captures deeper logical dependencies, enabling more robust and structured problem-solving.
arXiv Detail & Related papers (2025-04-13T13:35:41Z) - TuRTLe: A Unified Evaluation of LLMs for RTL Generation [0.6010802600885173]
We propose TuRTLe, a unified evaluation framework designed to assess LLMs across key RTL generation tasks.<n>We benchmark a diverse set of open LLMs and analyze their strengths and weaknesses in EDA-specific tasks.<n>Our results show that reasoning-based models, such as DeepSeek R1, consistently outperform others across multiple evaluation criteria.
arXiv Detail & Related papers (2025-03-31T07:43:12Z) - VeriMind: Agentic LLM for Automated Verilog Generation with a Novel Evaluation Metric [4.590930025882158]
We propose VeriMind, an agentic LLM framework for Verilog code generation.<n>We introduce a novel evaluation metric-pass@ARC-which combines the conventional pass@k measure with Average Refinement Cycles (ARC) to capture both success rate and the efficiency of iterative refinement.<n> Experimental results on diverse hardware design tasks demonstrated that our approach achieved up to $8.3%$ improvement on pass@k metric and $8.1%$ on pass@ARC metric.
arXiv Detail & Related papers (2025-03-15T23:43:06Z) - LLM-based Optimization of Compound AI Systems: A Survey [64.39860384538338]
In a compound AI system, components such as an LLM call, a retriever, a code interpreter, or tools are interconnected.
Recent advancements enable end-to-end optimization of these parameters using an LLM.
This paper presents a survey of the principles and emerging trends in LLM-based optimization of compound AI systems.
arXiv Detail & Related papers (2024-10-21T18:06:25Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - RTLRewriter: Methodologies for Large Models aided RTL Code Optimization [21.61206887869307]
This paper introduces RTLRewriter, an innovative framework that leverages large models to optimize RTL code.
A circuit partition pipeline is utilized for fast synthesis and efficient rewriting.
A specialized search engine is designed to identify useful optimization guides, algorithms, and code snippets.
arXiv Detail & Related papers (2024-09-04T09:59:37Z) - Guiding Enumerative Program Synthesis with Large Language Models [15.500250058226474]
In this paper, we evaluate the abilities of Large Language Models to solve formal synthesis benchmarks.
When one-shot synthesis fails, we propose a novel enumerative synthesis algorithm.
We find that GPT-3.5 as a stand-alone tool for formal synthesis is easily outperformed by state-of-the-art formal synthesis algorithms.
arXiv Detail & Related papers (2024-03-06T19:13:53Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - Synthesizing Efficiently Monitorable Formulas in Metric Temporal Logic [4.60607942851373]
We consider the problem of automatically synthesizing formal specifications from system executions.
Most of the classical approaches for synthesizing temporal logic formulas aim at minimizing the size of the formula.
We formalize this notion and devise a learning algorithm that synthesizes concise formulas having bounded lookahead.
arXiv Detail & Related papers (2023-10-26T14:13:15Z) - Linear Temporal Logic Modulo Theories over Finite Traces (Extended
Version) [72.38188258853155]
This paper studies Linear Temporal Logic over Finite Traces (LTLf)
proposition letters are replaced with first-order formulas interpreted over arbitrary theories.
The resulting logic, called Satisfiability Modulo Theories (LTLfMT), is semi-decidable.
arXiv Detail & Related papers (2022-04-28T17:57:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.