SLIDE: A Framework Integrating Small and Large Language Models for Open-Domain Dialogues Evaluation
- URL: http://arxiv.org/abs/2405.15924v3
- Date: Thu, 30 May 2024 02:13:56 GMT
- Title: SLIDE: A Framework Integrating Small and Large Language Models for Open-Domain Dialogues Evaluation
- Authors: Kun Zhao, Bohao Yang, Chen Tang, Chenghua Lin, Liang Zhan,
- Abstract summary: We propose a novel framework SLIDE (Small and Large Integrated for Dialogue Evaluation)
Our approach achieves state-of-the-art performance in both the classification and evaluation tasks, and additionally the SLIDE exhibits better correlation with human evaluators.
- Score: 23.203761925540736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The long-standing one-to-many problem of gold standard responses in open-domain dialogue systems presents challenges for automatic evaluation metrics. Though prior works have demonstrated some success by applying powerful Large Language Models (LLMs), existing approaches still struggle with the one-to-many problem, and exhibit subpar performance in domain-specific scenarios. We assume the commonsense reasoning biases within LLMs may hinder their performance in domainspecific evaluations. To address both issues, we propose a novel framework SLIDE (Small and Large Integrated for Dialogue Evaluation), that leverages both a small, specialised model (SLM), and LLMs for the evaluation of open domain dialogues. Our approach introduces several techniques: (1) Contrastive learning to differentiate between robust and non-robust response embeddings; (2) A novel metric for semantic sensitivity that combines embedding cosine distances with similarity learned through neural networks, and (3) a strategy for incorporating the evaluation results from both the SLM and LLMs. Our empirical results demonstrate that our approach achieves state-of-the-art performance in both the classification and evaluation tasks, and additionally the SLIDE evaluator exhibits better correlation with human judgements. Our code is available at https:// github.com/hegehongcha/SLIDE-ACL2024.
Related papers
- Paired Completion: Flexible Quantification of Issue-framing at Scale with LLMs [0.41436032949434404]
We develop and rigorously evaluate new detection methods for issue framing and narrative analysis within large text datasets.
We show that issue framing can be reliably and efficiently detected in large corpora with only a few examples of either perspective on a given issue.
arXiv Detail & Related papers (2024-08-19T07:14:15Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - R-Eval: A Unified Toolkit for Evaluating Domain Knowledge of Retrieval Augmented Large Language Models [51.468732121824125]
Large language models have achieved remarkable success on general NLP tasks, but they may fall short for domain-specific problems.
Existing evaluation tools only provide a few baselines and evaluate them on various domains without mining the depth of domain knowledge.
In this paper, we address the challenges of evaluating RALLMs by introducing the R-Eval toolkit, a Python toolkit designed to streamline the evaluation of different RAGs.
arXiv Detail & Related papers (2024-06-17T15:59:49Z) - Should We Fine-Tune or RAG? Evaluating Different Techniques to Adapt LLMs for Dialogue [1.8652965834931452]
We study the limitations of Large Language Models (LLMs) for the task of response generation in human-machine dialogue.
We extensively analyze different LLM adaptation techniques when applied to different dialogue types.
arXiv Detail & Related papers (2024-06-10T15:52:49Z) - Emphasising Structured Information: Integrating Abstract Meaning Representation into LLMs for Enhanced Open-Domain Dialogue Evaluation [26.330012489735456]
This paper proposes an effective framework for open-domain dialogue evaluation.
It combines domain-specific language models (SLMs) enhanced with Abstract Meaning Representation (AMR) knowledge with Large Language Models (LLMs)
Experimental results on open-domain dialogue evaluation tasks demonstrate the superiority of our method compared to a wide range of state-of-the-art baselines.
arXiv Detail & Related papers (2024-04-01T14:11:45Z) - A Comprehensive Analysis of the Effectiveness of Large Language Models
as Automatic Dialogue Evaluators [46.939611070781794]
Large language models (LLMs) are shown to be promising substitutes for human judges.
We analyze the multi-dimensional evaluation capability of 30 recently emerged LLMs at both turn and dialogue levels.
We also probe the robustness of the LLMs in handling various adversarial perturbations at both turn and dialogue levels.
arXiv Detail & Related papers (2023-12-24T04:50:57Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
We propose a generative judge with 13B parameters, Auto-J, designed to address these challenges.
Our model is trained on user queries and LLM-generated responses under massive real-world scenarios.
Experimentally, Auto-J outperforms a series of strong competitors, including both open-source and closed-source models.
arXiv Detail & Related papers (2023-10-09T07:27:15Z) - Simple LLM Prompting is State-of-the-Art for Robust and Multilingual
Dialogue Evaluation [7.767020408405403]
We propose a novel framework that takes advantage of the strengths of current evaluation models with the newly-established paradigm of prompting Large Language Models (LLMs)
Empirical results show our framework achieves state of the art results in terms of mean Spearman correlation scores across several benchmarks.
arXiv Detail & Related papers (2023-08-31T15:19:28Z) - Domain-Expanded ASTE: Rethinking Generalization in Aspect Sentiment Triplet Extraction [67.54420015049732]
Aspect Sentiment Triplet Extraction (ASTE) is a challenging task in sentiment analysis, aiming to provide fine-grained insights into human sentiments.
Existing benchmarks are limited to two domains and do not evaluate model performance on unseen domains.
We introduce a domain-expanded benchmark by annotating samples from diverse domains, enabling evaluation of models in both in-domain and out-of-domain settings.
arXiv Detail & Related papers (2023-05-23T18:01:49Z) - RADDLE: An Evaluation Benchmark and Analysis Platform for Robust
Task-oriented Dialog Systems [75.87418236410296]
We introduce the RADDLE benchmark, a collection of corpora and tools for evaluating the performance of models across a diverse set of domains.
RADDLE is designed to favor and encourage models with a strong generalization ability.
We evaluate recent state-of-the-art systems based on pre-training and fine-tuning, and find that grounded pre-training on heterogeneous dialog corpora performs better than training a separate model per domain.
arXiv Detail & Related papers (2020-12-29T08:58:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.