CORDIAL: Can Multimodal Large Language Models Effectively Understand Coherence Relationships?
- URL: http://arxiv.org/abs/2502.11300v1
- Date: Sun, 16 Feb 2025 22:54:44 GMT
- Title: CORDIAL: Can Multimodal Large Language Models Effectively Understand Coherence Relationships?
- Authors: Aashish Anantha Ramakrishnan, Aadarsh Anantha Ramakrishnan, Dongwon Lee,
- Abstract summary: This study emphasizes the need to move beyond similarity-based metrics and adopt a discourse-driven framework for evaluating MLLMs.
Our benchmark, CORDIAL, encompasses a broad spectrum of Coherence Relations across 3 different discourse domains at varying levels of granularity.
- Score: 5.246809683975664
- License:
- Abstract: Multimodal Large Language Models (MLLMs) are renowned for their superior instruction-following and reasoning capabilities across diverse problem domains. However, existing benchmarks primarily focus on assessing factual and logical correctness in downstream tasks, with limited emphasis on evaluating MLLMs' ability to interpret pragmatic cues and intermodal relationships. To address this gap, we assess the competency of MLLMs in performing Multimodal Discourse Analysis (MDA) using Coherence Relations. Our benchmark, CORDIAL, encompasses a broad spectrum of Coherence Relations across 3 different discourse domains at varying levels of granularity. Through our experiments on 10+ MLLMs employing different prompting strategies, we show that even top models like Gemini 1.5 Pro and GPT-4o fail to match the performance of simple classifier-based baselines. This study emphasizes the need to move beyond similarity-based metrics and adopt a discourse-driven framework for evaluating MLLMs, providing a more nuanced assessment of their capabilities. The benchmark and code are available at: https://github.com/aashish2000/CORDIAL.
Related papers
- Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
This paper investigates the role of the Large Language Model (LLM) backbone in Multimodal Large Language Models (MLLMs) evaluation.
Our study encompasses four diverse MLLM benchmarks and eight state-of-the-art MLLMs.
Key findings reveal that some benchmarks allow high performance even without visual inputs and up to 50% of error rates can be attributed to insufficient world knowledge in the LLM backbone.
arXiv Detail & Related papers (2024-10-16T07:49:13Z) - A Survey on Benchmarks of Multimodal Large Language Models [65.87641718350639]
This paper presents a comprehensive review of 200 benchmarks and evaluations for Multimodal Large Language Models (MLLMs)
We focus on (1)perception and understanding, (2)cognition and reasoning, (3)specific domains, (4)key capabilities, and (5)other modalities.
Our key argument is that evaluation should be regarded as a crucial discipline to support the development of MLLMs better.
arXiv Detail & Related papers (2024-08-16T09:52:02Z) - MMRel: A Relation Understanding Benchmark in the MLLM Era [72.95901753186227]
Multi-Modal Relation Understanding (MMRel) is a benchmark that features large-scale, high-quality, and diverse data on inter-object relations.
MMRel is ideal for evaluating MLLMs on relation understanding, as well as for fine-tuning MLLMs to enhance relation comprehension capability.
arXiv Detail & Related papers (2024-06-13T13:51:59Z) - SLIDE: A Framework Integrating Small and Large Language Models for Open-Domain Dialogues Evaluation [23.203761925540736]
We propose a novel framework SLIDE (Small and Large Integrated for Dialogue Evaluation)
Our approach achieves state-of-the-art performance in both the classification and evaluation tasks, and additionally the SLIDE exhibits better correlation with human evaluators.
arXiv Detail & Related papers (2024-05-24T20:32:49Z) - MLLM-as-a-Judge: Assessing Multimodal LLM-as-a-Judge with Vision-Language Benchmark [41.68821233828375]
This paper introduces a novel benchmark, termed MLLM-as-a-Judge, to assess the ability of MLLMs in assisting judges across diverse modalities.
Our study reveals that, while MLLMs demonstrate remarkable human-like discernment in Pair Comparison, there is a significant divergence from human preferences in Scoring Evaluation and Batch Ranking.
arXiv Detail & Related papers (2024-02-07T12:28:32Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
Multimodal large language models (MLLMs) have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs.
SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions.
We evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations.
arXiv Detail & Related papers (2023-11-28T05:53:55Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence.
Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning.
We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark.
arXiv Detail & Related papers (2023-11-20T07:06:31Z) - MM-BigBench: Evaluating Multimodal Models on Multimodal Content
Comprehension Tasks [56.60050181186531]
We introduce MM-BigBench, which incorporates a diverse range of metrics to offer an extensive evaluation of the performance of various models and instructions.
Our paper evaluates a total of 20 language models (14 MLLMs) on 14 multimodal datasets spanning 6 tasks, with 10 instructions for each task, and derives novel insights.
arXiv Detail & Related papers (2023-10-13T11:57:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.