論文の概要: Wearable-based behaviour interpolation for semi-supervised human activity recognition
- arxiv url: http://arxiv.org/abs/2405.15962v1
- Date: Fri, 24 May 2024 22:21:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 01:49:07.224405
- Title: Wearable-based behaviour interpolation for semi-supervised human activity recognition
- Title(参考訳): 半教師付き人間行動認識のためのウェアラブルに基づく行動補間
- Authors: Haoran Duan, Shidong Wang, Varun Ojha, Shizheng Wang, Yawen Huang, Yang Long, Rajiv Ranjan, Yefeng Zheng,
- Abstract要約: 我々は,ラベル付きアクティビティと非ラベル付きアクティビティを同時に使用する,深層半教師付きヒューマンアクティビティ認識(HAR)アプローチであるMixHARを導入する。
以上の結果から,MixHARはHARにおける深層半教師技術の可能性を示すとともに,性能を著しく向上させることが示された。
- 参考スコア(独自算出の注目度): 27.895342617584085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While traditional feature engineering for Human Activity Recognition (HAR) involves a trial-anderror process, deep learning has emerged as a preferred method for high-level representations of sensor-based human activities. However, most deep learning-based HAR requires a large amount of labelled data and extracting HAR features from unlabelled data for effective deep learning training remains challenging. We, therefore, introduce a deep semi-supervised HAR approach, MixHAR, which concurrently uses labelled and unlabelled activities. Our MixHAR employs a linear interpolation mechanism to blend labelled and unlabelled activities while addressing both inter- and intra-activity variability. A unique challenge identified is the activityintrusion problem during mixing, for which we propose a mixing calibration mechanism to mitigate it in the feature embedding space. Additionally, we rigorously explored and evaluated the five conventional/popular deep semi-supervised technologies on HAR, acting as the benchmark of deep semi-supervised HAR. Our results demonstrate that MixHAR significantly improves performance, underscoring the potential of deep semi-supervised techniques in HAR.
- Abstract(参考訳): HAR(Human Activity Recognition)の伝統的な特徴工学は、試行錯誤のプロセスを含むが、ディープラーニングは、センサーに基づく人間の活動の高レベルな表現の方法として好まれている。
しかし、ほとんどのディープラーニングベースのHARは、大量のラベル付きデータを必要とし、効果的なディープラーニングトレーニングを行うために、未学習データからHAR特徴を抽出するのは難しいままである。
そこで我々は,ラベル付きアクティビティと非ラベル付きアクティビティを同時に使用する深層半教師付きHARアプローチであるMixHARを導入する。
われわれのMixHARは線形補間機構を用いてラベル付きおよび非ラベル付き活性をブレンドし, 活性間および活性内変動に対処する。
そこで我々は, 混合キャリブレーション機構を提案し, 特徴埋め込み空間内でのミキシングキャリブレーションを緩和する手法を提案する。
さらに, 従来の5つの半教師技術について, HARのベンチマークとして, 厳密に検討し, 評価を行った。
以上の結果から,MixHARはHARにおける深層半教師技術の可能性を示すとともに,性能を著しく向上させることが示された。
関連論文リスト
- VCHAR:Variance-Driven Complex Human Activity Recognition framework with Generative Representation [6.278293754210117]
VCHAR(Variance-Driven Complex Human Activity Recognition)は、原子活動の出力を特定の間隔での分布として扱う新しいフレームワークである。
VCHARは、原子活動の正確な時間的・シーケンシャルなラベル付けを必要とせず、複雑な活動認識の精度を高める。
論文 参考訳(メタデータ) (2024-07-03T17:24:36Z) - ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
因果関係を考慮したエントロピー(entropy)という用語を導入し,効率的な探索を行うための潜在的影響の高いアクションを効果的に識別し,優先順位付けする。
提案アルゴリズムであるACE:Off-policy Actor-critic with Causality-aware Entropy regularizationは,29種類の連続制御タスクに対して,大幅な性能上の優位性を示す。
論文 参考訳(メタデータ) (2024-02-22T13:22:06Z) - Efficient Deep Clustering of Human Activities and How to Improve
Evaluation [53.08810276824894]
我々は,ヒト活動の再コーグ・ニオン(HAR)のための新しい深層クラスタリングモデルを提案する。
本稿では,HARクラスタリングモデルがどのように評価されるかという,いくつかの異なる問題を取り上げる。
次に、これらの問題に対する解決策について議論し、将来の深層HARクラスタリングモデルに対する標準評価設定を提案する。
論文 参考訳(メタデータ) (2022-09-17T14:12:42Z) - TASKED: Transformer-based Adversarial learning for human activity
recognition using wearable sensors via Self-KnowledgE Distillation [6.458496335718508]
本稿では,TASKED(Self-KnowledgE Distillation)を用いたウェアラブルセンサを用いた,トランスフォーマーに基づく人間行動認識のための新しい逆学習フレームワークを提案する。
提案手法では,教師なしの自己知識蒸留を採用し,訓練手順の安定性と人間の活動認識性能を向上させる。
論文 参考訳(メタデータ) (2022-09-14T11:08:48Z) - Multi-level Contrast Network for Wearables-based Joint Activity
Segmentation and Recognition [10.828099015828693]
ウェアラブルを用いたヒューマンアクティビティ認識(HAR)は、多くのスマートヘルスケアアプリケーションで広く採用可能な、有望な研究である。
ほとんどのHARアルゴリズムは、必要不可欠なが滅多に悪用されないマルチクラスウィンドウ問題の影響を受けやすい。
我々は,HARにセグメンテーション技術を導入し,共同活動セグメンテーションと認識を実現した。
論文 参考訳(メタデータ) (2022-08-16T05:39:02Z) - ACP++: Action Co-occurrence Priors for Human-Object Interaction
Detection [102.9428507180728]
ヒューマン・オブジェクト・インタラクション(HOI)検出のタスクにおける一般的な問題は、多数のHOIクラスが少数のラベル付き例しか持たないことである。
我々は、人間と物体の相互作用の間に自然の相関関係と反相関が存在することを観察した。
我々は、これらの先行知識を学習し、特に稀なクラスにおいて、より効果的な訓練に活用する手法を提案する。
論文 参考訳(メタデータ) (2021-09-09T06:02:50Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
現実世界のアプリケーションで特定のアクション理解の需要が高まっているため、きめ細かいアクション認識が注目を集めている。
そこで本研究では,各クラスに付与されるサンプル数だけを用いて,新規なきめ細かい動作を認識することを目的とした,数発のきめ細かな動作認識問題を提案する。
粒度の粗い動作では進展があったが、既存の数発の認識手法では、粒度の細かい動作を扱う2つの問題に遭遇する。
論文 参考訳(メタデータ) (2021-08-15T02:21:01Z) - Detecting Human-Object Interactions with Action Co-occurrence Priors [108.31956827512376]
人-物間相互作用(HOI)検出タスクにおける一般的な問題は、多数のHOIクラスが少数のラベル付き例しか持たないことである。
我々は、人間と物体の相互作用の間に自然の相関と反相関が存在することを観察した。
我々はこれらの先行知識を学習し、特に稀なクラスにおいてより効果的な訓練に活用する手法を提案する。
論文 参考訳(メタデータ) (2020-07-17T02:47:45Z) - Spectrum-Guided Adversarial Disparity Learning [52.293230153385124]
本稿では,新たなエンド・ツー・エンドの知識指向学習フレームワークを提案する。
2つの競合符号化分布を用いてクラス条件付きクラス内不一致を表現し、学習された不一致を識別することで精製された潜伏符号を学習する。
4つのHARベンチマークデータセットに対する実験により,提案手法の頑健性と,最先端の手法による一般化が実証された。
論文 参考訳(メタデータ) (2020-07-14T05:46:27Z) - A Deep Learning Method for Complex Human Activity Recognition Using
Virtual Wearable Sensors [22.923108537119685]
センサに基づくヒューマンアクティビティ認識(HAR)は、現在、複数のアプリケーション領域で研究ホットスポットとなっている。
本研究では,実シーンにおける複雑なHARの深層学習に基づく新しい手法を提案する。
提案手法は驚くほど数イテレーションで収束し、実際のIMUデータセット上で91.15%の精度が得られる。
論文 参考訳(メタデータ) (2020-03-04T03:31:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。