Inference of Utilities and Time Preference in Sequential Decision-Making
- URL: http://arxiv.org/abs/2405.15975v2
- Date: Mon, 3 Jun 2024 18:40:20 GMT
- Title: Inference of Utilities and Time Preference in Sequential Decision-Making
- Authors: Haoyang Cao, Zhengqi Wu, Renyuan Xu,
- Abstract summary: This paper introduces a novel control framework to enhance the capabilities of automated investment managers, or robo-advisors.
We propose a continuous-time model that incorporates utility functions and a generic discounting scheme of a time-varying rate, tailored to each client's risk tolerance, valuation of daily consumption, and significant life goals.
Our proposed framework not only advances financial technology by improving personalized investment advice but also contributes broadly to other fields such as healthcare, economics, and artificial intelligence.
- Score: 3.823356975862005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel stochastic control framework to enhance the capabilities of automated investment managers, or robo-advisors, by accurately inferring clients' investment preferences from past activities. Our approach leverages a continuous-time model that incorporates utility functions and a generic discounting scheme of a time-varying rate, tailored to each client's risk tolerance, valuation of daily consumption, and significant life goals. We address the resulting time inconsistency issue through state augmentation and the establishment of the dynamic programming principle and the verification theorem. Additionally, we provide sufficient conditions for the identifiability of client investment preferences. To complement our theoretical developments, we propose a learning algorithm based on maximum likelihood estimation within a discrete-time Markov Decision Process framework, augmented with entropy regularization. We prove that the log-likelihood function is locally concave, facilitating the fast convergence of our proposed algorithm. Practical effectiveness and efficiency are showcased through two numerical examples, including Merton's problem and an investment problem with unhedgeable risks. Our proposed framework not only advances financial technology by improving personalized investment advice but also contributes broadly to other fields such as healthcare, economics, and artificial intelligence, where understanding individual preferences is crucial.
Related papers
- Deep Generative Demand Learning for Newsvendor and Pricing [7.594251468240168]
We consider data-driven inventory and pricing decisions in the feature-based newsvendor problem.
We propose a novel approach leveraging conditional deep generative models (cDGMs) to address these challenges.
We provide theoretical guarantees for our approach, including the consistency of profit estimation and convergence of our decisions to the optimal solution.
arXiv Detail & Related papers (2024-11-13T14:17:26Z) - Data-Driven Goal Recognition Design for General Behavioral Agents [14.750023724230774]
We introduce a data-driven approach to goal recognition design that can account for agents with general behavioral models.
We propose a gradient-based optimization framework that accommodates various constraints to optimize decision-making environments.
arXiv Detail & Related papers (2024-04-03T20:38:22Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Adaptive Real Time Exploration and Optimization for Safety-Critical
Systems [0.0]
We propose the ARTEO algorithm, where we cast multi-armed bandits as a programming problem subject to safety constraints.
We learn the environmental characteristics through changes in optimization inputs and through exploration.
Compared to existing safe-learning approaches, our algorithm does not require an exclusive exploration phase and follows the optimization goals even in the explored points.
arXiv Detail & Related papers (2022-11-10T11:37:22Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Sequential Information Design: Markov Persuasion Process and Its
Efficient Reinforcement Learning [156.5667417159582]
This paper proposes a novel model of sequential information design, namely the Markov persuasion processes (MPPs)
Planning in MPPs faces the unique challenge in finding a signaling policy that is simultaneously persuasive to the myopic receivers and inducing the optimal long-term cumulative utilities of the sender.
We design a provably efficient no-regret learning algorithm, the Optimism-Pessimism Principle for Persuasion Process (OP4), which features a novel combination of both optimism and pessimism principles.
arXiv Detail & Related papers (2022-02-22T05:41:43Z) - Safe Online Bid Optimization with Return-On-Investment and Budget
Constraints subject to Uncertainty [87.81197574939355]
We study the nature of both the optimization and learning problems.
We provide an algorithm, namely GCB, guaranteeing sublinear regret at the cost of a potentially linear number of constraints violations.
More interestingly, we provide an algorithm, namely GCB_safe(psi,phi), guaranteeing both sublinear pseudo-regret and safety w.h.p. at the cost of accepting tolerances psi and phi.
arXiv Detail & Related papers (2022-01-18T17:24:20Z) - Multi-Agent Reinforcement Learning with Temporal Logic Specifications [65.79056365594654]
We study the problem of learning to satisfy temporal logic specifications with a group of agents in an unknown environment.
We develop the first multi-agent reinforcement learning technique for temporal logic specifications.
We provide correctness and convergence guarantees for our main algorithm.
arXiv Detail & Related papers (2021-02-01T01:13:03Z) - Learning Risk Preferences from Investment Portfolios Using Inverse
Optimization [25.19470942583387]
This paper presents a novel approach of measuring risk preference from existing portfolios using inverse optimization.
We demonstrate our methods on real market data that consists of 20 years of asset pricing and 10 years of mutual fund portfolio holdings.
arXiv Detail & Related papers (2020-10-04T21:29:29Z) - Regularized Online Allocation Problems: Fairness and Beyond [7.433931244705934]
We introduce the emphregularized online allocation problem, a variant that includes a non-linear regularizer acting on the total resource consumption.
In this problem, requests repeatedly arrive over time and, for each request, a decision maker needs to take an action that generates a reward and consumes resources.
The objective is to simultaneously maximize additively separable rewards and the value of a non-separable regularizer subject to the resource constraints.
arXiv Detail & Related papers (2020-07-01T14:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.