論文の概要: Understanding the Impact of Training Set Size on Animal Re-identification
- arxiv url: http://arxiv.org/abs/2405.15976v1
- Date: Fri, 24 May 2024 23:15:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 01:49:07.206668
- Title: Understanding the Impact of Training Set Size on Animal Re-identification
- Title(参考訳): トレーニングセットのサイズが動物の再識別に及ぼす影響を理解する
- Authors: Aleksandr Algasov, Ekaterina Nepovinnykh, Tuomas Eerola, Heikki Kälviäinen, Charles V. Stewart, Lasha Otarashvili, Jason A. Holmberg,
- Abstract要約: 本研究では,種特異的な特徴,特に個体内変異が,訓練データ要求に顕著な影響を及ぼすことを示す。
ローカル機能とエンド・ツー・エンドの学習ベースのアプローチの利点を実証する。
- 参考スコア(独自算出の注目度): 36.37275024049744
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in the automatic re-identification of animal individuals from images have opened up new possibilities for studying wildlife through camera traps and citizen science projects. Existing methods leverage distinct and permanent visual body markings, such as fur patterns or scars, and typically employ one of two strategies: local features or end-to-end learning. In this study, we delve into the impact of training set size by conducting comprehensive experiments across six different methods and five animal species. While it is well known that end-to-end learning-based methods surpass local feature-based methods given a sufficient amount of good-quality training data, the challenge of gathering such datasets for wildlife animals means that local feature-based methods remain a more practical approach for many species. We demonstrate the benefits of both local feature and end-to-end learning-based approaches and show that species-specific characteristics, particularly intra-individual variance, have a notable effect on training data requirements.
- Abstract(参考訳): 近年、画像から動物を自動識別する技術が進歩し、カメラトラップや市民科学プロジェクトを通じて野生生物を研究する新たな可能性が高まっている。
既存の手法では、毛皮の模様や傷跡などの視覚的な特徴を区別し、通常、局所的な特徴とエンドツーエンドの学習という2つの戦略の1つを用いる。
本研究では,6つの異なる方法と5種の動物に対して総合的な実験を行うことで,トレーニングセットサイズの影響を調査した。
高品質な訓練データが得られると、エンド・ツー・エンドの学習ベースの手法が局所的特徴ベース手法を上回ることはよく知られているが、そのようなデータセットを野生動物に集めることの難しさは、多くの種にとって、局所的特徴ベース手法がより実践的なアプローチであることを意味している。
地域特徴とエンド・ツー・エンドの学習に基づくアプローチの利点を実証し,種特異的な特徴,特に個人内変異が,データ要求の訓練に顕著な影響を及ぼすことを示す。
関連論文リスト
- Generalization in birdsong classification: impact of transfer learning methods and dataset characteristics [2.6740633963478095]
大規模な鳥音分類における伝達学習の有効性について検討する。
実験により, 微調整蒸留と知識蒸留の双方で高い性能が得られた。
動物音コミュニティにおけるより包括的なラベリングの実践を提唱する。
論文 参考訳(メタデータ) (2024-09-21T11:33:12Z) - Active Learning-Based Species Range Estimation [20.422188189640053]
そこで本研究では,地上観測の限られた数から,種の地理的範囲を効率的に推定するための,新しいアクティブラーニング手法を提案する。
弱教師付きコミュニティで収集された観測データに基づいて訓練されたモデルを用いて,この候補範囲の集合を生成することができることを示す。
提案手法の詳細な評価を行い,1000種に対する専門家由来の範囲を含む評価データセットを用いて,既存のアクティブラーニング手法と比較した。
論文 参考訳(メタデータ) (2023-11-03T17:45:18Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
モーションアクティベートカメラトラップは、世界中の野生生物を追跡・監視するための効率的なツールである。
教師付き学習技術は、そのような画像を分析するためにうまく展開されているが、そのような訓練には専門家のアノテーションが必要である。
コストのかかるラベル付きデータへの依存を減らすことは、人間の労働力を大幅に減らした大規模野生生物追跡ソリューションを開発する上で、大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-11-02T08:32:00Z) - CLAMP: Prompt-based Contrastive Learning for Connecting Language and
Animal Pose [70.59906971581192]
本稿では,言語とAniMal Poseを効果的に接続するための,新しいプロンプトベースのコントラスト学習手法を提案する。
CLAMPは、ネットワークトレーニング中にテキストプロンプトを動物のキーポイントに適応させることでギャップを埋めようとしている。
実験結果から, 教師付き, 少数ショット, ゼロショット設定下での最先端性能が得られた。
論文 参考訳(メタデータ) (2022-06-23T14:51:42Z) - Deep learning with self-supervision and uncertainty regularization to
count fish in underwater images [28.261323753321328]
効果的な保全活動には、効果的な人口監視が必要です。
画像サンプリングによる人口のモニタリングにより、データ収集は安価で広く、侵入性が低くなっている。
このようなデータから動物を数えることは、特に騒々しい画像に密に詰め込まれた場合、困難です。
深層学習は多くのコンピュータビジョンタスクの最先端の手法であるが、動物を数えるためにはまだ十分に研究されていない。
論文 参考訳(メタデータ) (2021-04-30T13:02:19Z) - Pretrained equivariant features improve unsupervised landmark discovery [69.02115180674885]
我々は、この課題を克服する2段階の教師なしアプローチを、強力なピクセルベースの特徴を初めて学習することによって定式化する。
本手法は,いくつかの難解なランドマーク検出データセットにおいて最先端の結果を生成する。
論文 参考訳(メタデータ) (2021-04-07T05:42:11Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
長尾視覚認識のための分散アライメント戦略を提案する。
次に,二段階学習における一般化された再重み付け法を導入して,事前のクラスバランスをとる。
提案手法は, 4つの認識タスクすべてにおいて, 単純で統一されたフレームワークを用いて最先端の結果を得る。
論文 参考訳(メタデータ) (2021-03-30T14:09:53Z) - Fine-grained Species Recognition with Privileged Pooling: Better Sample
Efficiency Through Supervised Attention [26.136331738529243]
トレーニングデータに対するキーポイントアノテーションの形式で特権情報を利用する教師付き画像分類手法を提案する。
我々の主な動機は、生物多様性モデリングのような生態学的応用のための動物種の認識である。
3つの異なる動物種のデータセットを用いた実験では、特権プールを持つ深層ネットワークがより効率的に小さなトレーニングセットを利用でき、より一般化できることが示されている。
論文 参考訳(メタデータ) (2020-03-20T10:03:01Z) - Transferring Dense Pose to Proximal Animal Classes [83.84439508978126]
より一般的な対象検出器やセグメンタなどと同様に、密集したポーズ認識に存在する知識を、他のクラスにおける密集したポーズ認識の問題に移すことが可能であることを示す。
我々は、人間と幾何学的に整合した新しい動物のためのDensePoseモデルを確立することでこれを行う。
また、クラスチンパンジーにDensePoseの方法でラベル付けされた2つのベンチマークデータセットを導入し、アプローチを評価するためにそれらを使用します。
論文 参考訳(メタデータ) (2020-02-28T21:43:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。