BadGD: A unified data-centric framework to identify gradient descent vulnerabilities
- URL: http://arxiv.org/abs/2405.15979v1
- Date: Fri, 24 May 2024 23:39:45 GMT
- Title: BadGD: A unified data-centric framework to identify gradient descent vulnerabilities
- Authors: Chi-Hua Wang, Guang Cheng,
- Abstract summary: BadGD sets a new standard for understanding and mitigating adversarial manipulations.
This research underscores the severe threats posed by such data-centric attacks and highlights the urgent need for robust defenses in machine learning.
- Score: 10.996626204702189
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present BadGD, a unified theoretical framework that exposes the vulnerabilities of gradient descent algorithms through strategic backdoor attacks. Backdoor attacks involve embedding malicious triggers into a training dataset to disrupt the model's learning process. Our framework introduces three novel constructs: Max RiskWarp Trigger, Max GradWarp Trigger, and Max GradDistWarp Trigger, each designed to exploit specific aspects of gradient descent by distorting empirical risk, deterministic gradients, and stochastic gradients respectively. We rigorously define clean and backdoored datasets and provide mathematical formulations for assessing the distortions caused by these malicious backdoor triggers. By measuring the impact of these triggers on the model training procedure, our framework bridges existing empirical findings with theoretical insights, demonstrating how a malicious party can exploit gradient descent hyperparameters to maximize attack effectiveness. In particular, we show that these exploitations can significantly alter the loss landscape and gradient calculations, leading to compromised model integrity and performance. This research underscores the severe threats posed by such data-centric attacks and highlights the urgent need for robust defenses in machine learning. BadGD sets a new standard for understanding and mitigating adversarial manipulations, ensuring the reliability and security of AI systems.
Related papers
- DeTrigger: A Gradient-Centric Approach to Backdoor Attack Mitigation in Federated Learning [4.932796168357307]
Federated Learning (FL) enables collaborative model training across distributed devices while preserving local data privacy, making it ideal for mobile and embedded systems.
However, the decentralized nature of FL also opens vulnerabilities to model poisoning attacks, particularly backdoor attacks.
We propose DeTrigger, a scalable and efficient backdoor-robust federated learning framework.
arXiv Detail & Related papers (2024-11-19T04:12:14Z) - Certified Robustness to Data Poisoning in Gradient-Based Training [10.79739918021407]
We develop the first framework providing provable guarantees on the behavior of models trained with potentially manipulated data.
Our framework certifies robustness against untargeted and targeted poisoning, as well as backdoor attacks.
We demonstrate our approach on multiple real-world datasets from applications including energy consumption, medical imaging, and autonomous driving.
arXiv Detail & Related papers (2024-06-09T06:59:46Z) - Mellivora Capensis: A Backdoor-Free Training Framework on the Poisoned Dataset without Auxiliary Data [29.842087372804905]
This paper addresses the challenges of backdoor attack countermeasures in real-world scenarios.
We propose a robust and clean-data-free backdoor defense framework, namely Mellivora Capensis (textttMeCa), which enables the model trainer to train a clean model on the poisoned dataset.
arXiv Detail & Related papers (2024-05-21T12:20:19Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
Multimodal contrastive learning has emerged as a powerful paradigm for building high-quality features.
backdoor attacks subtly embed malicious behaviors within the model during training.
We introduce an innovative token-based localized forgetting training regime.
arXiv Detail & Related papers (2024-03-24T18:33:15Z) - Model X-ray:Detecting Backdoored Models via Decision Boundary [62.675297418960355]
Backdoor attacks pose a significant security vulnerability for deep neural networks (DNNs)
We propose Model X-ray, a novel backdoor detection approach based on the analysis of illustrated two-dimensional (2D) decision boundaries.
Our approach includes two strategies focused on the decision areas dominated by clean samples and the concentration of label distribution.
arXiv Detail & Related papers (2024-02-27T12:42:07Z) - A Theoretical Insight into Attack and Defense of Gradient Leakage in
Transformer [11.770915202449517]
The Deep Leakage from Gradient (DLG) attack has emerged as a prevalent and highly effective method for extracting sensitive training data by inspecting exchanged gradients.
This research presents a comprehensive analysis of the gradient leakage method when applied specifically to transformer-based models.
arXiv Detail & Related papers (2023-11-22T09:58:01Z) - Refiner: Data Refining against Gradient Leakage Attacks in Federated
Learning [28.76786159247595]
gradient leakage attacks exploit clients' uploaded gradients to reconstruct their sensitive data.
In this paper, we explore a novel defensive paradigm that departs from conventional gradient perturbation approaches.
We design Refiner that jointly optimize two metrics for privacy protection and performance maintenance.
arXiv Detail & Related papers (2022-12-05T05:36:15Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.