Explainer-guided Targeted Adversarial Attacks against Binary Code Similarity Detection Models
- URL: http://arxiv.org/abs/2506.05430v1
- Date: Thu, 05 Jun 2025 08:29:19 GMT
- Title: Explainer-guided Targeted Adversarial Attacks against Binary Code Similarity Detection Models
- Authors: Mingjie Chen, Tiancheng Zhu, Mingxue Zhang, Yiling He, Minghao Lin, Penghui Li, Kui Ren,
- Abstract summary: We propose a novel optimization for adversarial attacks against BCSD models.<n>In particular, we aim to improve the attacks in a challenging scenario, where the attack goal is to limit the model predictions to a specific range.<n>Our attack leverages the superior capability of black-box, model-agnostic explainers in interpreting the model decision boundaries.
- Score: 12.524811181751577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Binary code similarity detection (BCSD) serves as a fundamental technique for various software engineering tasks, e.g., vulnerability detection and classification. Attacks against such models have therefore drawn extensive attention, aiming at misleading the models to generate erroneous predictions. Prior works have explored various approaches to generating semantic-preserving variants, i.e., adversarial samples, to evaluate the robustness of the models against adversarial attacks. However, they have mainly relied on heuristic criteria or iterative greedy algorithms to locate salient code influencing the model output, failing to operate on a solid theoretical basis. Moreover, when processing programs with high complexities, such attacks tend to be time-consuming. In this work, we propose a novel optimization for adversarial attacks against BCSD models. In particular, we aim to improve the attacks in a challenging scenario, where the attack goal is to limit the model predictions to a specific range, i.e., the targeted attacks. Our attack leverages the superior capability of black-box, model-agnostic explainers in interpreting the model decision boundaries, thereby pinpointing the critical code snippet to apply semantic-preserving perturbations. The evaluation results demonstrate that compared with the state-of-the-art attacks, the proposed attacks achieve higher attack success rate in almost all scenarios, while also improving the efficiency and transferability. Our real-world case studies on vulnerability detection and classification further demonstrate the security implications of our attacks, highlighting the urgent need to further enhance the robustness of existing BCSD models.
Related papers
- MISLEADER: Defending against Model Extraction with Ensembles of Distilled Models [56.09354775405601]
Model extraction attacks aim to replicate the functionality of a black-box model through query access.<n>Most existing defenses presume that attacker queries have out-of-distribution (OOD) samples, enabling them to detect and disrupt suspicious inputs.<n>We propose MISLEADER, a novel defense strategy that does not rely on OOD assumptions.
arXiv Detail & Related papers (2025-06-03T01:37:09Z) - Evaluating the Robustness of LiDAR Point Cloud Tracking Against Adversarial Attack [6.101494710781259]
We introduce a unified framework for conducting adversarial attacks within the context of 3D object tracking.<n>In addressing black-box attack scenarios, we introduce a novel transfer-based approach, the Target-aware Perturbation Generation (TAPG) algorithm.<n>Our experimental findings reveal a significant vulnerability in advanced tracking methods when subjected to both black-box and white-box attacks.
arXiv Detail & Related papers (2024-10-28T10:20:38Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
Adversarial Training (AT) is pivotal in fortifying the robustness of deep learning models.
AT methods, relying on direct iterative updates for target model's defense, frequently encounter obstacles such as unstable training and catastrophic overfitting.
We present a general proxy guided defense framework, LAST' (bf Learn from the Pbf ast)
arXiv Detail & Related papers (2023-10-19T13:13:41Z) - Adversarial Attacks Against Uncertainty Quantification [10.655660123083607]
This work focuses on a different adversarial scenario in which the attacker is still interested in manipulating the uncertainty estimate.
In particular, the goal is to undermine the use of machine-learning models when their outputs are consumed by a downstream module or by a human operator.
arXiv Detail & Related papers (2023-09-19T12:54:09Z) - Transferable Attack for Semantic Segmentation [59.17710830038692]
adversarial attacks, and observe that the adversarial examples generated from a source model fail to attack the target models.
We propose an ensemble attack for semantic segmentation to achieve more effective attacks with higher transferability.
arXiv Detail & Related papers (2023-07-31T11:05:55Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Adversarial Attack and Defense of Structured Prediction Models [58.49290114755019]
In this paper, we investigate attacks and defenses for structured prediction tasks in NLP.
The structured output of structured prediction models is sensitive to small perturbations in the input.
We propose a novel and unified framework that learns to attack a structured prediction model using a sequence-to-sequence model.
arXiv Detail & Related papers (2020-10-04T15:54:03Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z) - Poisoning Attacks on Algorithmic Fairness [14.213638219685656]
We introduce an optimization framework for poisoning attacks against algorithmic fairness.
We develop a gradient-based poisoning attack aimed at introducing classification disparities among different groups in the data.
We believe that our findings pave the way towards the definition of an entirely novel set of adversarial attacks targeting algorithmic fairness in different scenarios.
arXiv Detail & Related papers (2020-04-15T08:07:01Z) - Luring of transferable adversarial perturbations in the black-box
paradigm [0.0]
We present a new approach to improve the robustness of a model against black-box transfer attacks.
A removable additional neural network is included in the target model, and is designed to induce the textitluring effect.
Our deception-based method only needs to have access to the predictions of the target model and does not require a labeled data set.
arXiv Detail & Related papers (2020-04-10T06:48:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.