Convergence Behavior of an Adversarial Weak Supervision Method
- URL: http://arxiv.org/abs/2405.16013v1
- Date: Sat, 25 May 2024 02:33:17 GMT
- Title: Convergence Behavior of an Adversarial Weak Supervision Method
- Authors: Steven An, Sanjoy Dasgupta,
- Abstract summary: Weak Supervision is a paradigm subsuming subareas of machine learning.
By using labeled data to train modern machine learning methods, the cost of acquiring large amounts of hand labeled data can be ameliorated.
Two approaches to combining the rules-of-thumb falls into two camps, reflecting different ideologies of statistical estimation.
- Score: 10.409652277630133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Labeling data via rules-of-thumb and minimal label supervision is central to Weak Supervision, a paradigm subsuming subareas of machine learning such as crowdsourced learning and semi-supervised ensemble learning. By using this labeled data to train modern machine learning methods, the cost of acquiring large amounts of hand labeled data can be ameliorated. Approaches to combining the rules-of-thumb falls into two camps, reflecting different ideologies of statistical estimation. The most common approach, exemplified by the Dawid-Skene model, is based on probabilistic modeling. The other, developed in the work of Balsubramani-Freund and others, is adversarial and game-theoretic. We provide a variety of statistical results for the adversarial approach under log-loss: we characterize the form of the solution, relate it to logistic regression, demonstrate consistency, and give rates of convergence. On the other hand, we find that probabilistic approaches for the same model class can fail to be consistent. Experimental results are provided to corroborate the theoretical results.
Related papers
- Robust Training of Federated Models with Extremely Label Deficiency [84.00832527512148]
Federated semi-supervised learning (FSSL) has emerged as a powerful paradigm for collaboratively training machine learning models using distributed data with label deficiency.
We propose a novel twin-model paradigm, called Twin-sight, designed to enhance mutual guidance by providing insights from different perspectives of labeled and unlabeled data.
Our comprehensive experiments on four benchmark datasets provide substantial evidence that Twin-sight can significantly outperform state-of-the-art methods across various experimental settings.
arXiv Detail & Related papers (2024-02-22T10:19:34Z) - Bias-inducing geometries: an exactly solvable data model with fairness
implications [13.690313475721094]
We introduce an exactly solvable high-dimensional model of data imbalance.
We analytically unpack the typical properties of learning models trained in this synthetic framework.
We obtain exact predictions for the observables that are commonly employed for fairness assessment.
arXiv Detail & Related papers (2022-05-31T16:27:57Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Generalizable Information Theoretic Causal Representation [37.54158138447033]
We propose to learn causal representation from observational data by regularizing the learning procedure with mutual information measures according to our hypothetical causal graph.
The optimization involves a counterfactual loss, based on which we deduce a theoretical guarantee that the causality-inspired learning is with reduced sample complexity and better generalization ability.
arXiv Detail & Related papers (2022-02-17T00:38:35Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.