論文の概要: Theoretical Analysis of Weak-to-Strong Generalization
- arxiv url: http://arxiv.org/abs/2405.16043v1
- Date: Sat, 25 May 2024 03:48:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 01:19:52.447282
- Title: Theoretical Analysis of Weak-to-Strong Generalization
- Title(参考訳): 弱-ストロング一般化の理論解析
- Authors: Hunter Lang, David Sontag, Aravindan Vijayaraghavan,
- Abstract要約: 既存の弱監督理論は擬似ラベル補正とカバレッジ拡張を考慮しないことを示す。
我々の境界線は、強モデルが追加の誤りを起こさずに弱教師の誤りに適合できない場合に、弱強一般化が起こるという直感を捉えている。
- 参考スコア(独自算出の注目度): 23.235671743867492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Strong student models can learn from weaker teachers: when trained on the predictions of a weaker model, a strong pretrained student can learn to correct the weak model's errors and generalize to examples where the teacher is not confident, even when these examples are excluded from training. This enables learning from cheap, incomplete, and possibly incorrect label information, such as coarse logical rules or the generations of a language model. We show that existing weak supervision theory fails to account for both of these effects, which we call pseudolabel correction and coverage expansion, respectively. We give a new bound based on expansion properties of the data distribution and student hypothesis class that directly accounts for pseudolabel correction and coverage expansion. Our bounds capture the intuition that weak-to-strong generalization occurs when the strong model is unable to fit the mistakes of the weak teacher without incurring additional error. We show that these expansion properties can be checked from finite data and give empirical evidence that they hold in practice.
- Abstract(参考訳): 強い学生モデルは弱い教師から学ぶことができ、弱いモデルの予測に基づいて訓練すると、強い訓練を受けた学生は弱いモデルの誤りを訂正し、教師が自信を持っていない例に一般化することができる。
これにより、粗い論理規則や言語モデルの世代といった、安価で不完全で、おそらく不正確なラベル情報から学習することができる。
既存の弱い監督理論はこれらの効果の両方を考慮せず、これらは擬似ラベル補正とカバレッジ拡張と呼ばれる。
我々は,データ分布の展開特性と学生仮説クラスに基づいて,疑似ラベル補正とカバレッジ拡張を直接考慮した新たな境界を与える。
我々の境界線は、強モデルが追加の誤りを起こさずに弱教師の誤りに適合できない場合に、弱強一般化が起こるという直感を捉えている。
これらの拡張特性は有限データから確認でき、実際に保持する実証的な証拠を与える。
関連論文リスト
- Wide Two-Layer Networks can Learn from Adversarial Perturbations [27.368408524000778]
摂動学習の反直感的成功を理論的に説明する。
対角摂動は、ネットワークがそれらから一般化するのに十分なクラス固有の特徴を含むことを証明している。
論文 参考訳(メタデータ) (2024-10-31T06:55:57Z) - Toward Understanding In-context vs. In-weight Learning [50.24035812301655]
本研究は,文脈内学習の出現と消失を引き起こす簡易な分布特性を同定する。
そして、この研究を完全な大規模言語モデルに拡張し、自然言語プロンプトの様々なコレクションの微調整が、文脈内および重み付き学習の振る舞いをいかに引き出すかを示す。
論文 参考訳(メタデータ) (2024-10-30T14:09:00Z) - Language Models Resist Alignment [8.4506780540122]
大きな言語モデル(LLM)は望ましくない振る舞いを示す。
近年の取り組みは、有害な発生を防ぐためにこれらのモデルを調整することに重点を置いている。
その結果,微調整プロセスは事前訓練に比べてアライメントを損なうことがわかった。
論文 参考訳(メタデータ) (2024-06-10T10:03:16Z) - Pre-training and Diagnosing Knowledge Base Completion Models [58.07183284468881]
我々は,事実の集合から他の集合への知識伝達へのアプローチを,エンティティや関係マッチングを必要とせずに導入し,分析する。
主な貢献は、構造化されていないテキストから収集された事実の大規模事前学習を利用する方法である。
得られた事前学習モデルをよりよく理解するために,オープン知識ベースコンプリートのための事前学習モデルの解析のための新しいデータセットを導入する。
論文 参考訳(メタデータ) (2024-01-27T15:20:43Z) - Classification and Adversarial examples in an Overparameterized Linear
Model: A Signal Processing Perspective [10.515544361834241]
最先端のディープラーニング分類器は、無限の逆境摂動に非常に敏感である。
学習されたモデルは、分類が一般化するが回帰はしない中間体制の敵に感受性がある。
敵対的感受性にもかかわらず、これらの特徴による分類は、より一般的に研究されている「非依存的特徴」モデルよりも容易である。
論文 参考訳(メタデータ) (2021-09-27T17:35:42Z) - Predicting Unreliable Predictions by Shattering a Neural Network [145.3823991041987]
線形ニューラルネットワークは、サブファンクションに分割することができる。
サブファンクションは、独自のアクティベーションパターン、ドメイン、経験的エラーを持っている。
完全なネットワークに対する経験的エラーは、サブファンクションに対する期待として記述できる。
論文 参考訳(メタデータ) (2021-06-15T18:34:41Z) - Understanding Robustness in Teacher-Student Setting: A New Perspective [42.746182547068265]
適応的な例は機械学習モデルで、有界な対向的摂動はモデルを誤解させ、任意に誤った予測をすることができる。
広範な研究は、逆例の存在を説明し、モデルのロバスト性を改善する方法を提供する。
我々の研究は、敵対的な事例に関する将来の探索を暗示し、原則化されたデータ拡張を通じてモデルロバスト性を高めることができる。
論文 参考訳(メタデータ) (2021-02-25T20:54:24Z) - Contrastive Learning Inverts the Data Generating Process [36.30995987986073]
一般に使用されるインフォアンスファミリーに属する目標で訓練されたフィードフォワードモデルは、観測データの基底となる生成モデルを暗黙的に反転させることを学習する。
本理論は, コントラスト学習, 生成モデル, 非線形独立成分分析の基本的な関係を明らかにする。
論文 参考訳(メタデータ) (2021-02-17T16:21:54Z) - Don't Just Blame Over-parametrization for Over-confidence: Theoretical
Analysis of Calibration in Binary Classification [58.03725169462616]
理論上は、過剰パラメトリゼーションは過剰信頼の唯一の理由ではない。
我々は、ロジスティック回帰は本質的に信頼過剰であり、実現可能で、非パラメータな設定であることを示す。
おそらく驚くことに、過剰な信頼が常にそうであるとは限らないことも示します。
論文 参考訳(メタデータ) (2021-02-15T21:38:09Z) - A Sober Look at the Unsupervised Learning of Disentangled
Representations and their Evaluation [63.042651834453544]
モデルとデータの両方に帰納的バイアスを伴わずに,非教師なしの非教師付き表現学習は不可能であることを示す。
異なる手法は、対応する損失によって「強化」された特性を効果的に強制するが、よく見分けられたモデルは監督なしでは特定できないように見える。
以上の結果から,遠絡学習における今後の研究は,帰納的バイアスと(単純に)監督の役割を明確化すべきであることが示唆された。
論文 参考訳(メタデータ) (2020-10-27T10:17:15Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。