Beyond Primal-Dual Methods in Bandits with Stochastic and Adversarial Constraints
- URL: http://arxiv.org/abs/2405.16118v1
- Date: Sat, 25 May 2024 08:09:36 GMT
- Title: Beyond Primal-Dual Methods in Bandits with Stochastic and Adversarial Constraints
- Authors: Martino Bernasconi, Matteo Castiglioni, Andrea Celli, Federico Fusco,
- Abstract summary: We address a generalization of the bandit with knapsacks problem, where a learner aims to maximize rewards while satisfying an arbitrary set of long-term constraints.
Our goal is to design best-of-both-worlds algorithms that perform under both and adversarial constraints.
- Score: 29.514323697659613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address a generalization of the bandit with knapsacks problem, where a learner aims to maximize rewards while satisfying an arbitrary set of long-term constraints. Our goal is to design best-of-both-worlds algorithms that perform optimally under both stochastic and adversarial constraints. Previous works address this problem via primal-dual methods, and require some stringent assumptions, namely the Slater's condition, and in adversarial settings, they either assume knowledge of a lower bound on the Slater's parameter, or impose strong requirements on the primal and dual regret minimizers such as requiring weak adaptivity. We propose an alternative and more natural approach based on optimistic estimations of the constraints. Surprisingly, we show that estimating the constraints with an UCB-like approach guarantees optimal performances. Our algorithm consists of two main components: (i) a regret minimizer working on \emph{moving strategy sets} and (ii) an estimate of the feasible set as an optimistic weighted empirical mean of previous samples. The key challenge in this approach is designing adaptive weights that meet the different requirements for stochastic and adversarial constraints. Our algorithm is significantly simpler than previous approaches, and has a cleaner analysis. Moreover, ours is the first best-of-both-worlds algorithm providing bounds logarithmic in the number of constraints. Additionally, in stochastic settings, it provides $\widetilde O(\sqrt{T})$ regret \emph{without} Slater's condition.
Related papers
- Best-of-Both-Worlds Policy Optimization for CMDPs with Bandit Feedback [34.7178680288326]
Stradi et al.(2024) proposed the first best-of-both-worlds algorithm for constrained Markov decision processes.
In this paper, we provide the first best-of-both-worlds algorithm for CMDPs with bandit feedback.
Our algorithm is based on a policy optimization approach, which is much more efficient than occupancy-measure-based methods.
arXiv Detail & Related papers (2024-10-03T07:44:40Z) - Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features [65.64276393443346]
The Frank-Wolfe (FW) method is a popular approach for solving optimization problems with structured constraints.
We present two new variants of the algorithms for minimization of the finite-sum gradient.
arXiv Detail & Related papers (2023-04-23T20:05:09Z) - A Unifying Framework for Online Optimization with Long-Term Constraints [62.35194099438855]
We study online learning problems in which a decision maker has to take a sequence of decisions subject to $m$ long-term constraints.
The goal is to maximize their total reward, while at the same time achieving small cumulative violation across the $T$ rounds.
We present the first best-of-both-world type algorithm for this general class problems, with no-regret guarantees both in the case in which rewards and constraints are selected according to an unknown model, and in the case in which they are selected at each round by an adversary.
arXiv Detail & Related papers (2022-09-15T16:59:19Z) - On Kernelized Multi-Armed Bandits with Constraints [16.102401271318012]
We study a bandit problem with a general unknown reward function and a general unknown constraint function.
We propose a general framework for both algorithm performance analysis.
We demonstrate the superior performance of our proposed algorithms via numerical experiments.
arXiv Detail & Related papers (2022-03-29T14:02:03Z) - Concave Utility Reinforcement Learning with Zero-Constraint Violations [43.29210413964558]
We consider the problem of concave utility reinforcement learning (CURL) with convex constraints.
We propose a model-based learning algorithm that also achieves zero constraint violations.
arXiv Detail & Related papers (2021-09-12T06:13:33Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Constraint-Handling Techniques for Particle Swarm Optimization
Algorithms [0.0]
Population-based methods can cope with a variety of different problems, including problems of remarkably higher complexity than those traditional methods can handle.
The aim here is to develop and compare different CHTs suitable for PSOs, which are incorporated to an algorithm with general-purpose settings.
arXiv Detail & Related papers (2021-01-25T01:49:10Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - On Lower Bounds for Standard and Robust Gaussian Process Bandit
Optimization [55.937424268654645]
We consider algorithm-independent lower bounds for the problem of black-box optimization of functions having a bounded norm.
We provide a novel proof technique for deriving lower bounds on the regret, with benefits including simplicity, versatility, and an improved dependence on the error probability.
arXiv Detail & Related papers (2020-08-20T03:48:14Z) - Structure Adaptive Algorithms for Stochastic Bandits [22.871155520200773]
We study reward maximisation in a class of structured multi-armed bandit problems.
The mean rewards of arms satisfy some given structural constraints.
We develop algorithms from instance-dependent lower-bounds using iterative saddle-point solvers.
arXiv Detail & Related papers (2020-07-02T08:59:54Z) - The Simulator: Understanding Adaptive Sampling in the
Moderate-Confidence Regime [52.38455827779212]
We propose a novel technique for analyzing adaptive sampling called the em Simulator.
We prove the first instance-based lower bounds the top-k problem which incorporate the appropriate log-factors.
Our new analysis inspires a simple and near-optimal for the best-arm and top-k identification, the first em practical of its kind for the latter problem.
arXiv Detail & Related papers (2017-02-16T23:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.