Optimization over Sparse Support-Preserving Sets: Two-Step Projection with Global Optimality Guarantees
- URL: http://arxiv.org/abs/2506.08558v2
- Date: Wed, 11 Jun 2025 06:46:49 GMT
- Title: Optimization over Sparse Support-Preserving Sets: Two-Step Projection with Global Optimality Guarantees
- Authors: William de Vazelhes, Xiao-Tong Yuan, Bin Gu,
- Abstract summary: In sparse optimization, enforcing hard constraints using the $ell_$ pseudo-norm offers advantages like controlled sparsity.<n>Many real-world applications demand not only sparsity constraints but also some extra constraints.<n>We present a new variant of hard-preserving iterative algorithm equipped with a two-step projection operator customized for these mixed constraints.
- Score: 34.164821598251315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In sparse optimization, enforcing hard constraints using the $\ell_0$ pseudo-norm offers advantages like controlled sparsity compared to convex relaxations. However, many real-world applications demand not only sparsity constraints but also some extra constraints. While prior algorithms have been developed to address this complex scenario with mixed combinatorial and convex constraints, they typically require the closed form projection onto the mixed constraints which might not exist, and/or only provide local guarantees of convergence which is different from the global guarantees commonly sought in sparse optimization. To fill this gap, in this paper, we study the problem of sparse optimization with extra support-preserving constraints commonly encountered in the literature. We present a new variant of iterative hard-thresholding algorithm equipped with a two-step consecutive projection operator customized for these mixed constraints, serving as a simple alternative to the Euclidean projection onto the mixed constraint. By introducing a novel trade-off between sparsity relaxation and sub-optimality, we provide global guarantees in objective value for the output of our algorithm, in the deterministic, stochastic, and zeroth-order settings, under the conventional restricted strong-convexity/smoothness assumptions. As a fundamental contribution in proof techniques, we develop a novel extension of the classic three-point lemma to the considered two-step non-convex projection operator, which allows us to analyze the convergence in objective value in an elegant way that has not been possible with existing techniques. In the zeroth-order case, such technique also improves upon the state-of-the-art result from de Vazelhes et. al. (2022), even in the case without additional constraints, by allowing us to remove a non-vanishing system error present in their work.
Related papers
- Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints [49.76332265680669]
This paper examines a crucial subset of problems where both the objective and constraint functions are weakly convex.<n>Existing methods often face limitations, including slow convergence rates or reliance on double-loop designs.<n>We introduce a novel single-loop penalty-based algorithm to overcome these challenges.
arXiv Detail & Related papers (2025-04-21T17:15:48Z) - A Double Tracking Method for Optimization with Decentralized Generalized Orthogonality Constraints [4.6796315389639815]
Decentralized optimization problems are unsolvable in the presence of distributed constraints.
We introduce a novel algorithm that tracks the gradient of the objective function and the Jacobian of the constraint mapping simultaneously.
We present numerical results on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-09-08T06:57:35Z) - Projection-Free Variance Reduction Methods for Stochastic Constrained Multi-Level Compositional Optimization [34.628967272528044]
This paper investigates projection-free algorithms for constrained multi-level optimization functions.
By using a stage-wise adaptation, we obtain complexities for convex and strongly convex functions.
arXiv Detail & Related papers (2024-06-06T06:56:56Z) - Low-Rank Extragradient Methods for Scalable Semidefinite Optimization [17.384717824118255]
We focus on high-dimensional and plausible settings in which the problem admits a low-rank solution.<n>We provide several theoretical results proving that, under these circumstances, the well-known Extragradient method converges to a solution of the constrained optimization problem.
arXiv Detail & Related papers (2024-02-14T10:48:00Z) - Projection-Free Online Convex Optimization with Stochastic Constraints [0.0]
We develop projection-free algorithms for online convex optimization with constraints.
We deduce sublinear regret and constraint violation bounds for various settings.
We prove that the constraint violation can be reduced to have the same growth as the regret.
arXiv Detail & Related papers (2023-05-02T11:27:34Z) - Accelerated First-Order Optimization under Nonlinear Constraints [61.98523595657983]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.<n>An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Algorithm for Constrained Markov Decision Process with Linear
Convergence [55.41644538483948]
An agent aims to maximize the expected accumulated discounted reward subject to multiple constraints on its costs.
A new dual approach is proposed with the integration of two ingredients: entropy regularized policy and Vaidya's dual.
The proposed approach is shown to converge (with linear rate) to the global optimum.
arXiv Detail & Related papers (2022-06-03T16:26:38Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
We introduce a class of first-order methods for smooth constrained optimization.
Two distinctive features of our approach are that projections or optimizations over the entire feasible set are avoided.
The resulting algorithmic procedure is simple to implement even when constraints are nonlinear.
arXiv Detail & Related papers (2021-07-17T11:45:13Z) - On Lower Bounds for Standard and Robust Gaussian Process Bandit
Optimization [55.937424268654645]
We consider algorithm-independent lower bounds for the problem of black-box optimization of functions having a bounded norm.
We provide a novel proof technique for deriving lower bounds on the regret, with benefits including simplicity, versatility, and an improved dependence on the error probability.
arXiv Detail & Related papers (2020-08-20T03:48:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.