論文の概要: Improving Multi-lingual Alignment Through Soft Contrastive Learning
- arxiv url: http://arxiv.org/abs/2405.16155v2
- Date: Tue, 28 May 2024 04:51:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 11:09:02.702505
- Title: Improving Multi-lingual Alignment Through Soft Contrastive Learning
- Title(参考訳): ソフトコントラスト学習による多言語アライメントの改善
- Authors: Minsu Park, Seyeon Choi, Chanyeol Choi, Jun-Seong Kim, Jy-yong Sohn,
- Abstract要約: 本稿では,事前学習した単言語埋め込みモデルによって測定された文の類似性に基づいて,多言語埋め込みを整合させる新しい手法を提案する。
翻訳文ペアが与えられた場合、言語間埋め込み間の類似性は、単言語教師モデルで測定された文の類似性に従うように、多言語モデルを訓練する。
- 参考スコア(独自算出の注目度): 9.454626745893798
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Making decent multi-lingual sentence representations is critical to achieve high performances in cross-lingual downstream tasks. In this work, we propose a novel method to align multi-lingual embeddings based on the similarity of sentences measured by a pre-trained mono-lingual embedding model. Given translation sentence pairs, we train a multi-lingual model in a way that the similarity between cross-lingual embeddings follows the similarity of sentences measured at the mono-lingual teacher model. Our method can be considered as contrastive learning with soft labels defined as the similarity between sentences. Our experimental results on five languages show that our contrastive loss with soft labels far outperforms conventional contrastive loss with hard labels in various benchmarks for bitext mining tasks and STS tasks. In addition, our method outperforms existing multi-lingual embeddings including LaBSE, for Tatoeba dataset. The code is available at https://github.com/YAI12xLinq-B/IMASCL
- Abstract(参考訳): 適切な多言語文表現を作ることは、言語間下流タスクで高いパフォーマンスを達成するために重要である。
本研究では,事前学習した単言語埋め込みモデルによって測定された文の類似性に基づいて,多言語埋め込みを整合させる新しい手法を提案する。
翻訳文ペアが与えられた場合、言語間埋め込み間の類似性は、単言語教師モデルで測定された文の類似性に従うように、多言語モデルを訓練する。
本手法は,文間の類似性として定義されたソフトラベルを用いたコントラスト学習とみなすことができる。
5つの言語に対する実験結果から,ソフトラベルとの対比損失は,bitextマイニングタスクやSTSタスクのベンチマークにおいて,従来のハードラベルとの対比損失よりもはるかに優れていたことが明らかとなった。
さらに,本手法は,Tatoebaデータセットに対するLaBSEを含む既存の多言語埋め込みよりも優れていた。
コードはhttps://github.com/YAI12xLinq-B/IMASCLで入手できる。
関連論文リスト
- VECO 2.0: Cross-lingual Language Model Pre-training with
Multi-granularity Contrastive Learning [56.47303426167584]
複数粒度アライメントを持つコントラスト学習に基づく言語間事前学習モデルVECO2.0を提案する。
具体的には、シーケンス・ツー・シーケンスアライメントが誘導され、並列対の類似性を最大化し、非並列対を最小化する。
トークン・ツー・トークンのアライメントは、シソーラス辞書を介して発掘された同義トークンと、バイリンガルな例の他の未使用トークンとのギャップを埋めるために統合される。
論文 参考訳(メタデータ) (2023-04-17T12:23:41Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Multilingual Representation Distillation with Contrastive Learning [20.715534360712425]
コントラスト学習を多言語表現蒸留に統合し,並列文の品質評価に利用する。
我々は,多言語類似性探索とコーパスフィルタリングタスクによるアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2022-10-10T22:27:04Z) - Exposing Cross-Lingual Lexical Knowledge from Multilingual Sentence
Encoders [85.80950708769923]
本稿では,多言語言語モデルを用いて,それらのパラメータに格納された言語間語彙の知識量を探索し,元の多言語LMと比較する。
また、この知識を付加的に微調整した多言語モデルにより公開する新しい手法も考案した。
標準ベンチマークの大幅な向上を報告します。
論文 参考訳(メタデータ) (2022-04-30T13:23:16Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z) - Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text
Classification [52.69730591919885]
本稿では,ラベル保存型入力摂動の最大損失を最小限に抑える半教師付き対向学習法を提案する。
多様な言語群に対する文書分類と意図分類において,有効性が著しく向上するのを観察する。
論文 参考訳(メタデータ) (2020-07-29T19:38:35Z) - On the Language Neutrality of Pre-trained Multilingual Representations [70.93503607755055]
語彙意味論に関して,多言語文脈埋め込みの言語中立性を直接的に検討する。
その結果、文脈埋め込みは言語ニュートラルであり、概して静的な単語型埋め込みよりも情報的であることがわかった。
本稿では,言語識別における最先端の精度に到達し,並列文の単語アライメントのための統計的手法の性能を一致させる方法について述べる。
論文 参考訳(メタデータ) (2020-04-09T19:50:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。