論文の概要: GlycanML: A Multi-Task and Multi-Structure Benchmark for Glycan Machine Learning
- arxiv url: http://arxiv.org/abs/2405.16206v3
- Date: Tue, 01 Oct 2024 05:14:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-02 16:32:02.379172
- Title: GlycanML: A Multi-Task and Multi-Structure Benchmark for Glycan Machine Learning
- Title(参考訳): GlycanML: Glycan機械学習のためのマルチタスクとマルチストラクチャベンチマーク
- Authors: Minghao Xu, Yunteng Geng, Yihang Zhang, Ling Yang, Jian Tang, Wentao Zhang,
- Abstract要約: グリカンMLベンチマークは、グリカン分類学予測、グリカン免疫原性予測、グリコシル化型予測、タンパク質-グリカン相互作用予測など様々なタスクからなる。
8つのグリカン分類予測タスクを同時に実行することにより、マルチタスク学習(MTL)アルゴリズムのためのGlycanML-MTLテストベッドを導入する。
実験結果から,マルチリレーショナルGNNを用いたグリカンのモデル化が優れており,適切なMTL法によりモデル性能が向上することが示された。
- 参考スコア(独自算出の注目度): 35.818061926699336
- License:
- Abstract: Glycans are basic biomolecules and perform essential functions within living organisms. The rapid increase of functional glycan data provides a good opportunity for machine learning solutions to glycan understanding. However, there still lacks a standard machine learning benchmark for glycan property and function prediction. In this work, we fill this blank by building a comprehensive benchmark for Glycan Machine Learning (GlycanML). The GlycanML benchmark consists of diverse types of tasks including glycan taxonomy prediction, glycan immunogenicity prediction, glycosylation type prediction, and protein-glycan interaction prediction. Glycans can be represented by both sequences and graphs in GlycanML, which enables us to extensively evaluate sequence-based models and graph neural networks (GNNs) on benchmark tasks. Furthermore, by concurrently performing eight glycan taxonomy prediction tasks, we introduce the GlycanML-MTL testbed for multi-task learning (MTL) algorithms. Also, we evaluate how taxonomy prediction can boost other three function prediction tasks by MTL. Experimental results show the superiority of modeling glycans with multi-relational GNNs, and suitable MTL methods can further boost model performance. We provide all datasets and source codes at https://github.com/GlycanML/GlycanML and maintain a leaderboard at https://GlycanML.github.io/project
- Abstract(参考訳): グリカンは基本的な生体分子であり、生物の中で必須の機能を発揮する。
機能的なグリカンデータの急速な増加は、グリカン理解のための機械学習ソリューションの好機となる。
しかし、グリカン特性と関数予測のための標準的な機械学習ベンチマークがまだ欠けている。
本稿では、Glycan Machine Learning(GlycanML)の包括的なベンチマークを構築することで、この空白を埋める。
GlycanMLベンチマークは、グリカン分類学予測、グリカン免疫原性予測、グリコシル化型予測、タンパク質-グリカン相互作用予測などの様々なタスクからなる。
グリカンはGlycanMLのシーケンスとグラフの両方で表現できるため、ベンチマークタスク上でシーケンスベースモデルとグラフニューラルネットワーク(GNN)を広範囲に評価することができる。
さらに、8つのグリカン分類予測タスクを同時に実行することにより、マルチタスク学習(MTL)アルゴリズムのためのGlycanML-MTLテストベッドを導入する。
また,分類学予測が他の3つの機能予測タスクをどのようにMTLによって促進するかを評価する。
実験結果から,マルチリレーショナルGNNを用いたグリカンのモデル化が優れており,適切なMTL法によりモデル性能が向上することが示された。
https://github.com/GlycanML/GlycanMLですべてのデータセットとソースコードを提供し、https://GlycanML.github.io/projectでリーダボードを維持しています。
関連論文リスト
- GlucoBench: Curated List of Continuous Glucose Monitoring Datasets with Prediction Benchmarks [0.12564343689544843]
連続血糖モニター (Continuous glucose monitors, CGM) は、血糖値を一定間隔で測定する小さな医療機器である。
CGMデータに基づくグルコーストラジェクトリの予測は、糖尿病管理を大幅に改善する可能性を秘めている。
論文 参考訳(メタデータ) (2024-10-08T08:01:09Z) - Higher-Order Message Passing for Glycan Representation Learning [0.0]
グラフネットワーク(GNN)は、グラフ構造化データの処理と解析のために設計されたディープラーニングモデルである。
本研究は, グリカン構造から潜在空間表現へ特徴を引き出すために, 錯体と高次メッセージパッシングに基づく新しいモデルアーキテクチャを提案する。
これらの改良により、計算グリコ科学のさらなる進歩が促進され、生物学におけるグリカンの役割が明らかにされることを期待している。
論文 参考訳(メタデータ) (2024-09-20T12:55:43Z) - Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
モデル予測に依存しない階層型動的ラベル付け(HDL)アルゴリズムを提案し,画像埋め込みを用いてサンプルラベルを生成する。
本手法は,半教師付き学習における擬似ラベル生成のパラダイムを変える可能性がある。
論文 参考訳(メタデータ) (2024-04-26T06:00:27Z) - GLEMOS: Benchmark for Instantaneous Graph Learning Model Selection [21.59275856238877]
GLEMOSは、即時グラフ学習(GL)モデル選択のためのベンチマークである。
リンク予測やノード分類を含む基本的なGLタスクのベンチマークデータを提供する。
新しいモデル、新しいグラフ、新しいパフォーマンスレコードで簡単に拡張できるように設計されている。
論文 参考訳(メタデータ) (2024-04-02T02:13:00Z) - uGLAD: Sparse graph recovery by optimizing deep unrolled networks [11.48281545083889]
深層ネットワークを最適化してスパースグラフ復元を行う新しい手法を提案する。
我々のモデルであるuGLADは、最先端モデルGLADを教師なし設定に構築し、拡張します。
我々は, 遺伝子調節ネットワークから生成した合成ガウスデータ, 非ガウスデータを用いて, モデル解析を行い, 嫌気性消化の事例研究を行った。
論文 参考訳(メタデータ) (2022-05-23T20:20:27Z) - DGL-LifeSci: An Open-Source Toolkit for Deep Learning on Graphs in Life
Science [5.3825788156200565]
DGL-LifeSciは,生命科学におけるグラフの深層学習のためのオープンソースパッケージである。
DGL-LifeSciはRDKit、PyTorch、Deep Graph Libraryをベースにしたピソンツールキットである。
これは、分子特性予測、反応予測、分子生成のためのカスタムデータセットに基づくGNNベースのモデリングを可能にする。
論文 参考訳(メタデータ) (2021-06-27T13:27:47Z) - Scientific Language Models for Biomedical Knowledge Base Completion: An
Empirical Study [62.376800537374024]
我々は,KG の完成に向けた科学的 LM の研究を行い,生物医学的リンク予測を強化するために,その潜在知識を活用できるかどうかを探る。
LMモデルとKG埋め込みモデルを統合し,各入力例をいずれかのモデルに割り当てることを学ぶルータ法を用いて,性能を大幅に向上させる。
論文 参考訳(メタデータ) (2021-06-17T17:55:33Z) - Structure-Enhanced Meta-Learning For Few-Shot Graph Classification [53.54066611743269]
本研究では,数点グラフ分類の解法のためのメトリベースメタラーニングの可能性を検討する。
SMFGINというGINの実装は、ChemblとTRIANGLESの2つのデータセットでテストされている。
論文 参考訳(メタデータ) (2021-03-05T09:03:03Z) - Interpretable Learning-to-Rank with Generalized Additive Models [78.42800966500374]
ラーニング・ツー・ランクのモデルの解釈可能性は、非常に重要でありながら、比較的過小評価されている研究分野である。
解釈可能なランキングモデルの最近の進歩は、主に既存のブラックボックスランキングモデルに対するポストホックな説明の生成に焦点を当てている。
一般化加法モデル(GAM)をランキングタスクに導入することにより,本質的に解釈可能な学習 to ランクの基盤を築いた。
論文 参考訳(メタデータ) (2020-05-06T01:51:30Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
グラフ畳み込みニューラルネットワーク(GCN)は近年,グラフに基づく半教師付き半教師付き分類において有望な結果を示した。
グラフに基づく半教師付き学習のためのGCN(GPGC)を用いたGP回帰モデルを提案する。
GPGCを評価するための広範囲な実験を行い、他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-02-26T10:02:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。