Dirac fermions with electric dipole moment and position-dependent mass in the presence of a magnetic field generated by magnetic monopoles
- URL: http://arxiv.org/abs/2405.16300v1
- Date: Sat, 25 May 2024 16:49:01 GMT
- Title: Dirac fermions with electric dipole moment and position-dependent mass in the presence of a magnetic field generated by magnetic monopoles
- Authors: R. R. S. Oliveira,
- Abstract summary: We determine the bound-state solutions for Dirac fermions with electric dipole moment (EDM) and position-dependent mass (PDM)
In particular, we discuss in detail the characteristics of the spectrum as well as analyze the behavior of the spectrum.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we determine the bound-state solutions for Dirac fermions with electric dipole moment (EDM) and position-dependent mass (PDM) in the presence of a radial magnetic field generated by magnetic monopoles. To achieve this, we work with the (2+1)-dimensional (DE) Dirac equation with nonminimal coupling in polar coordinates. Posteriorly, we obtain a second-order differential equation via quadratic DE (simplified by a similarity transformation). Solving this differential equation through a change of variable and the asymptotic behavior, we obtain a generalized Laguerre equation. From this, we obtain the bound-state solutions of the system, given by the two-component Dirac spinor and by the relativistic energy spectrum. So, we note that such spinor is written in terms of the generalized Laguerre polynomials, and such spectrum (for a fermion and an antifermion) is quantized in terms of the radial and total magnetic quantum numbers $n$ and $m_j$, and explicitly depends on the EDM $d$, PDM parameter $\kappa$, magnetic charge density $\lambda_m$, and on the spinorial parameter $s$. In particular, the quantization is a direct result of the existence of $\kappa$ (i.e., $\kappa$ acts as a kind of ``external field or potential''). Besides, we discuss in detail the characteristics of the spectrum as well as graphically analyze the behavior of the spectrum as a function of $\kappa$ and $\lambda_m$ for three different values of $n$ (ground state and the first two excited states).
Related papers
- Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field [0.0]
We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field.
We analyze it by the wave functions of two-component spinors with pseudo-spin symmetry using the Dirac equation.
Finally, the energy bands are plotted in terms of the wave vectors $K_x$ and $K_y$ with and without the magnetic term.
arXiv Detail & Related papers (2024-08-30T19:52:19Z) - Quantum-information theory of magnetic field influence on circular dots
with different boundary conditions [0.0]
2D circular quantum dots (QDs) whose circumference supports homogeneous either Dirichlet or Neumann boundary condition (BC)
Physical interpretation is based on the different roles of the two BCs and their interplay with the field: Dirichlet (Neumann) surface is a repulsive (attractive) interface.
arXiv Detail & Related papers (2023-06-28T11:33:11Z) - Direction-dependent coupling between a nanofiber-guided light field and
a two-level atom with an electric quadrupole transition [0.0]
We study the directional dependence of the coupling between a nanofiber-guided light field and a two-level atom with an electric quadrupole transition.
We show that the directional dependence of the coupling leads to the directional dependence of spontaneous emission into guided modes.
arXiv Detail & Related papers (2022-11-11T04:58:20Z) - On parametric resonance in the laser action [91.3755431537592]
We consider the selfconsistent semiclassical Maxwell--Schr"odinger system for the solid state laser.
We introduce the corresponding Poincar'e map $P$ and consider the differential $DP(Y0)$ at suitable stationary state $Y0$.
arXiv Detail & Related papers (2022-08-22T09:43:57Z) - Energy and magnetic moment of a quantum charged particle in time
dependent magnetic and electric fields of circular and plane solenoids [0.0]
We consider a quantum spinless nonrelativistic charged particle moving in the $xy$ plane under the action of a time-dependent magnetic field.
Explicit results are found in the cases of the sudden jump of magnetic field, the parametric resonance, the adiabatic evolution, and for several specific functions $B(t)$.
arXiv Detail & Related papers (2021-10-10T14:47:21Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Mapping the charge-dyon system into the position-dependent effective
mass background via Pauli equation [77.34726150561087]
This work aims to reproduce a quantum system composed of a charged spin - $1/2$ fermion interacting with a dyon with an opposite electrical charge.
arXiv Detail & Related papers (2020-11-01T14:38:34Z) - Four-Dimensional Scaling of Dipole Polarizability in Quantum Systems [55.54838930242243]
Polarizability is a key response property of physical and chemical systems.
We show that polarizability follows a universal four-dimensional scaling law.
This formula is also applicable to many-particle systems.
arXiv Detail & Related papers (2020-10-22T15:42:36Z) - Gordon decomposition of the magnetizability of the relativistic
hydrogenlike atoms in an arbitrary discrete energy state [0.0]
We present Gordon decomposition of magnetizability of Dirac one-electron atom in discrete energy eigenstate $Ze$.
The external magnetic field, by which the atomic state is perturbed, is assumed to be weak, static, and uniform.
We present also numerical values of relative dia- and paramagnetic contributions to the magnetizability for some excited states of selected hydrogenlike ions with $1 leqslant Z leqslant 137.
arXiv Detail & Related papers (2020-06-06T15:33:29Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.