Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field
- URL: http://arxiv.org/abs/2409.00234v1
- Date: Fri, 30 Aug 2024 19:52:19 GMT
- Title: Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field
- Authors: A. Kalani, Alireza Amani, M. A. Ramzanpour,
- Abstract summary: We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field.
We analyze it by the wave functions of two-component spinors with pseudo-spin symmetry using the Dirac equation.
Finally, the energy bands are plotted in terms of the wave vectors $K_x$ and $K_y$ with and without the magnetic term.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field. In order to describe the corresponding structure, we consider the propagation of electrons in graphene as relativistic fermion quasi-particles, and analyze it by the wave functions of two-component spinors with pseudo-spin symmetry using the Dirac equation. Next, to solve and analyze the Dirac equation, we obtain the eigenvalues and eigenvectors using the Legendre differential equation. After that, we obtain the bounded states of energy depending on the coefficients of Rosen-Morse and magnetic potentials in terms of quantum numbers of principal \(n\) and spin-orbit \(k\). Then, the values of the energy spectrum for the ground state and the first excited state are calculated, and the wave functions and the corresponding probabilities are plotted in terms of coordinates $r$. In what follows, we explore the band structure of gapped graphene by the modified dispersion relation and write it in terms of the two-dimensional wave vectors $K_x$ and $K_y$. Finally, the energy bands are plotted in terms of the wave vectors $K_x$ and $K_y$ with and without the magnetic term.
Related papers
- Dirac fermions with electric dipole moment and position-dependent mass in the presence of a magnetic field generated by magnetic monopoles [0.0]
We determine the bound-state solutions for Dirac fermions with electric dipole moment (EDM) and position-dependent mass (PDM)
In particular, we discuss in detail the characteristics of the spectrum as well as analyze the behavior of the spectrum.
arXiv Detail & Related papers (2024-05-25T16:49:01Z) - Foldy-Wouthuysen transformation and multiwave states of a graphene
electron in external fields and free (2+1)-space [91.3755431537592]
Graphene electrons in a static electric field can exist in the multiwave Hermite-Gauss states defining non-spreading coherent beams.
It is proven that the Hermite-Gauss beams exist even in the free space.
arXiv Detail & Related papers (2023-05-07T17:03:00Z) - Understanding the propagation of excitations in quantum spin chains with
different kind of interactions [68.8204255655161]
It is shown that the inhomogeneous chains are able to transfer excitations with near perfect fidelity.
It is shown that both designed chains have in common a partially ordered spectrum and well localized eigenvectors.
arXiv Detail & Related papers (2021-12-31T15:09:48Z) - Energy spectrum of massive Dirac particles in gapped graphene with Morse
potential [0.0]
We study the massive Dirac equation with the presence of the Morse potential in polar coordinate.
The Dirac Hamiltonian is written as two second-order differential equations in terms of two spinor wavefunctions.
We investigate the graphene band structure by a linear dispersion relation which creates an energy gap in the Dirac points called gapped graphene.
arXiv Detail & Related papers (2021-04-14T09:26:56Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Coherent states for graphene under the interaction of crossed electric
and magnetic fields [0.0]
We construct the coherent states for charge carriers in a graphene layer immersed in crossed external electric and magnetic fields.
In particular, these quantities are investigated for magnetic and electric fields near the condition of the Landau levels collapse.
arXiv Detail & Related papers (2020-08-20T19:10:49Z) - Gordon decomposition of the magnetizability of the relativistic
hydrogenlike atoms in an arbitrary discrete energy state [0.0]
We present Gordon decomposition of magnetizability of Dirac one-electron atom in discrete energy eigenstate $Ze$.
The external magnetic field, by which the atomic state is perturbed, is assumed to be weak, static, and uniform.
We present also numerical values of relative dia- and paramagnetic contributions to the magnetizability for some excited states of selected hydrogenlike ions with $1 leqslant Z leqslant 137.
arXiv Detail & Related papers (2020-06-06T15:33:29Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Approximate Solutions to the Klein-Fock-Gordon Equation for the sum of
Coulomb and Ring-Shaped like potentials [0.0]
We consider the quantum mechanical problem of the motion of a spinless charged relativistic particle with mass$M$.
It is shown that the system under consideration has both a discrete at $left|Eright|Mc2 $ and a continuous at $left|Eright|>Mc2 $ energy spectra.
It is also shown that relativistic expressions for wave functions, energy spectra and group generators in the limit $ctoinfty $ go over into the corresponding expressions for the nonrelativistic problem.
arXiv Detail & Related papers (2020-04-27T08:49:10Z) - Paraxial wave function and Gouy phase for a relativistic electron in a
uniform magnetic field [68.8204255655161]
A connection between quantum mechanics and paraxial equations is established for a Dirac particle in external fields.
The paraxial form of the Landau eigenfunction for a relativistic electron in a uniform magnetic field is determined.
arXiv Detail & Related papers (2020-03-08T13:14:44Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.