論文の概要: LEAST: "Local" text-conditioned image style transfer
- arxiv url: http://arxiv.org/abs/2405.16330v1
- Date: Sat, 25 May 2024 19:06:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 21:47:39.585279
- Title: LEAST: "Local" text-conditioned image style transfer
- Title(参考訳): LEAST: "ローカル" テキスト条件の画像スタイル転送
- Authors: Silky Singh, Surgan Jandial, Simra Shahid, Abhinav Java,
- Abstract要約: テキスト条件付きスタイル転送により、ユーザーはテキスト記述を通じて、希望する芸術的スタイルを伝達できる。
我々は,テキスト条件付き画像編集とスタイル転送技術について,正確な「ローカル」スタイル転送のためのユーザプロンプトのきめ細かい理解に基づいて評価した。
- 参考スコア(独自算出の注目度): 2.47996065798589
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Text-conditioned style transfer enables users to communicate their desired artistic styles through text descriptions, offering a new and expressive means of achieving stylization. In this work, we evaluate the text-conditioned image editing and style transfer techniques on their fine-grained understanding of user prompts for precise "local" style transfer. We find that current methods fail to accomplish localized style transfers effectively, either failing to localize style transfer to certain regions in the image, or distorting the content and structure of the input image. To this end, we carefully design an end-to-end pipeline that guarantees local style transfer according to users' intent. Further, we substantiate the effectiveness of our approach through quantitative and qualitative analysis. The project code is available at: https://github.com/silky1708/local-style-transfer.
- Abstract(参考訳): テキスト条件付きスタイル転送により、ユーザーはテキスト記述を通じて、希望する芸術スタイルをコミュニケーションでき、スタイリゼーションを実現するための新しい表現力のある手段を提供する。
本研究では,テキスト条件付き画像編集とスタイル転送技術について,ユーザプロンプトのきめ細かい理解に基づいて評価する。
画像中の特定の領域へのスタイル転送のローカライズに失敗したり、入力画像の内容や構造を歪ませたりするなど、現在の手法では局所化スタイル転送を効果的に達成できなかった。
この目的のために,ユーザの意図に応じて局所的なスタイル転送を保証するエンドツーエンドパイプラインを慎重に設計する。
さらに,定量的および定性的分析により,本手法の有効性を検証した。
プロジェクトのコードは、https://github.com/silky1708/local-style-transfer.comで公開されている。
関連論文リスト
- Bridging Text and Image for Artist Style Transfer via Contrastive Learning [21.962361974579036]
本稿では,任意のスタイル転送を制御するためのCLAST(Contrastive Learning for Artistic Style Transfer)を提案する。
画像テキストモデルからスタイル記述を効果的に抽出するための教師付きコントラスト訓練戦略を導入する。
また,AdaLNをベースとした新規かつ効率的な状態空間モデルを提案する。
論文 参考訳(メタデータ) (2024-10-12T15:27:57Z) - StyleMamba : State Space Model for Efficient Text-driven Image Style Transfer [9.010012117838725]
StyleMambaは、テキストプロンプトを対応する視覚スタイルに変換する効率的な画像スタイル転送フレームワークである。
既存のテキストガイドによるスタイリングには、数百のトレーニングイテレーションが必要で、多くのコンピューティングリソースが必要です。
論文 参考訳(メタデータ) (2024-05-08T12:57:53Z) - ParaGuide: Guided Diffusion Paraphrasers for Plug-and-Play Textual Style
Transfer [57.6482608202409]
テキストスタイル転送は、意味を保ちながらテキストのスタイル特性を変換するタスクである。
任意のスタイルに柔軟に適応できる汎用型転送のための新しい拡散型フレームワークを提案する。
本研究では,人的評価と自動評価の両面から,Enron Email Corpusの手法を検証するとともに,形式性,感情,さらにはオーサシップスタイルの伝達にも優れることを示す。
論文 参考訳(メタデータ) (2023-08-29T17:36:02Z) - Any-to-Any Style Transfer: Making Picasso and Da Vinci Collaborate [58.83278629019384]
スタイル転送は、コンテンツ参照のために、ある画像のスタイルを他の画像へのスタイル参照にレンダリングすることを目的としている。
既存のアプローチでは、スタイルイメージの全体的スタイルをグローバルな方法で適用するか、あるいは、スタイルイメージのローカル色とテクスチャを、事前に定義された方法でコンテンツに移行するかのいずれかである。
本稿では,Any-to-Any Style Transferを提案する。Any-to-Any Style Transferは,スタイル画像中の領域のスタイルを対話的に選択し,所定のコンテンツ領域に適用することができる。
論文 参考訳(メタデータ) (2023-04-19T15:15:36Z) - StylerDALLE: Language-Guided Style Transfer Using a Vector-Quantized
Tokenizer of a Large-Scale Generative Model [64.26721402514957]
本論文では,自然言語を用いて抽象芸術スタイルを記述するスタイル転送手法であるStylerDALLEを提案する。
具体的には、非自己回帰的なトークンシーケンス変換として、言語誘導型転送タスクを定式化する。
スタイル情報を組み込むために,CLIPに基づく言語指導による強化学習戦略を提案する。
論文 参考訳(メタデータ) (2023-03-16T12:44:44Z) - ITstyler: Image-optimized Text-based Style Transfer [25.60521982742093]
推論段階で最適化を必要としないテキストベースのスタイル転送手法を提案する。
具体的には,テキスト入力を事前学習したVGGネットワークのスタイル空間に変換し,より効果的なスタイルスワップを実現する。
本手法は,任意のテキスト入力スタイルをリアルタイムに転送し,高品質な芸術画像を合成する。
論文 参考訳(メタデータ) (2023-01-26T03:08:43Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStylerは、拡散された結果の内容とスタイルのバランスを制御するための二重拡散処理アーキテクチャである。
本稿では、逆復調処理をベースとしたコンテンツ画像に基づく学習可能なノイズを提案し、そのスタイリング結果により、コンテンツ画像の構造情報をよりよく保存する。
論文 参考訳(メタデータ) (2022-11-19T12:30:44Z) - StoryTrans: Non-Parallel Story Author-Style Transfer with Discourse
Representations and Content Enhancing [73.81778485157234]
長文は通常、文よりも談話構造のような複雑な著者の言語的嗜好を含んでいる。
我々は、入力されたストーリーを特定の著者スタイルに転送する必要があるノン並列ストーリー作者スタイル転送のタスクを定式化する。
モデルが自動エンコーダに退化することを防ぐために,学習した談話表現からスタイル的特徴を引き離すための追加の学習目標を用いる。
論文 参考訳(メタデータ) (2022-08-29T08:47:49Z) - CLIPstyler: Image Style Transfer with a Single Text Condition [34.24876359759408]
既存のニューラルスタイル転送法では、スタイル画像のテクスチャ情報をコンテンツ画像に転送するために参照スタイル画像が必要である。
そこで本稿では,スタイルイメージを必要とせず,所望のスタイルをテキストで記述した上でのみ,スタイル転送を可能にする新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-01T09:48:53Z) - Language-Driven Image Style Transfer [72.36790598245096]
我々は、テキストでガイドされたコンテンツイメージのスタイルを操作するための新しいタスク、言語駆動型イメージスタイル転送(textttLDIST)を導入する。
識別器は、スタイルイメージの言語とパッチの相関や、変換された結果の相関を考慮し、スタイル命令を共同で埋め込む。
実験により, CLVAは有効であり, textttLDIST 上で超高速に転送された結果が得られた。
論文 参考訳(メタデータ) (2021-06-01T01:58:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。