Qsco: A Quantum Scoring Module for Open-set Supervised Anomaly Detection
- URL: http://arxiv.org/abs/2405.16368v1
- Date: Sat, 25 May 2024 22:37:43 GMT
- Title: Qsco: A Quantum Scoring Module for Open-set Supervised Anomaly Detection
- Authors: Yifeng Peng, Xinyi Li, Zhiding Liang, Ying Wang,
- Abstract summary: The recent advances in quantum computing in handling complex data structures and improving machine learning models herald a paradigm shift in anomaly detection methodologies.
This study proposes a Quantum Scoring Module (Qsco), embedding quantum variational circuits into neural networks to enhance the model's processing capabilities in handling uncertainty and unlabeled data.
- Score: 5.931953711154524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open set anomaly detection (OSAD) is a crucial task that aims to identify abnormal patterns or behaviors in data sets, especially when the anomalies observed during training do not represent all possible classes of anomalies. The recent advances in quantum computing in handling complex data structures and improving machine learning models herald a paradigm shift in anomaly detection methodologies. This study proposes a Quantum Scoring Module (Qsco), embedding quantum variational circuits into neural networks to enhance the model's processing capabilities in handling uncertainty and unlabeled data. Extensive experiments conducted across eight real-world anomaly detection datasets demonstrate our model's superior performance in detecting anomalies across varied settings and reveal that integrating quantum simulators does not result in prohibitive time complexities. Our study validates the feasibility of quantum-enhanced anomaly detection methods in practical applications.
Related papers
- Observation of disorder-free localization and efficient disorder averaging on a quantum processor [117.33878347943316]
We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations.
We observe localization without disorder in quantum many-body dynamics in one and two dimensions.
arXiv Detail & Related papers (2024-10-09T05:28:14Z) - Quantum-enhanced learning with a controllable bosonic variational sensor network [0.40964539027092906]
Supervised learning assisted by an entangled sensor network (SLAEN)
We propose a SLAEN capable of handling nonlinear data classification tasks.
We uncover a threshold phenomenon in classification error -- when the energy of probes exceeds a certain threshold, the error drastically to zero.
arXiv Detail & Related papers (2024-04-28T19:41:40Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - Quantum-inspired anomaly detection, a QUBO formulation [0.0]
Anomaly detection is a crucial task in machine learning that involves identifying unusual patterns or events in data.
With the advent of quantum computing, there has been a growing interest in developing quantum approaches to anomaly detection.
arXiv Detail & Related papers (2023-11-06T16:12:15Z) - SaliencyCut: Augmenting Plausible Anomalies for Anomaly Detection [24.43321988051129]
We propose a novel saliency-guided data augmentation method, SaliencyCut, to produce pseudo but more common anomalies.
We then design a novel patch-wise residual module in the anomaly learning head to extract and assess the fine-grained anomaly features from each sample.
arXiv Detail & Related papers (2023-06-14T08:55:36Z) - Quantum Generative Adversarial Networks For Anomaly Detection In High
Energy Physics [0.0]
We develop a quantum generative adversarial network to identify anomalous events.
The method learns the background distribution from SM data and, then, determines whether a given event is characteristic for the learned background distribution.
We find that the quantum generative techniques using ten times fewer training data samples can yield comparable accuracy to the classical counterpart for the detection of the Graviton and Higgs particles.
arXiv Detail & Related papers (2023-04-27T18:01:14Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare.
The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns.
This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning.
arXiv Detail & Related papers (2022-11-09T22:40:22Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Out-Of-Bag Anomaly Detection [0.9449650062296822]
Data anomalies are ubiquitous in real world datasets, and can have an adverse impact on machine learning (ML) systems.
We propose a novel model-based anomaly detection method, that we call Out-of-Bag anomaly detection.
We show our method can improve the accuracy and reliability of an ML system as data pre-processing step via a case study on home valuation.
arXiv Detail & Related papers (2020-09-20T06:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.