論文の概要: On the Algorithmic Bias of Aligning Large Language Models with RLHF: Preference Collapse and Matching Regularization
- arxiv url: http://arxiv.org/abs/2405.16455v1
- Date: Sun, 26 May 2024 07:00:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 21:08:36.738722
- Title: On the Algorithmic Bias of Aligning Large Language Models with RLHF: Preference Collapse and Matching Regularization
- Title(参考訳): RLHFを用いた大規模言語モデルのアルゴリズム的バイアスについて: 優先分解と正規化の整合性
- Authors: Jiancong Xiao, Ziniu Li, Xingyu Xie, Emily Getzen, Cong Fang, Qi Long, Weijie J. Su,
- Abstract要約: 選好マッチング(PM) RLHF はBradley-Terry--Luce/Plackett--Luce モデルの下で、大きな言語モデルと報酬モデルの選好分布を整合させる新しいアプローチである。
我々のアプローチの中心はPM正則化器であり、応答上の LLM のポリシー確率分布の負の対数の形を取る。
本稿では,自然言語生成に適した条件付きPM RLHFを提案する。
- 参考スコア(独自算出の注目度): 33.331389392270665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately aligning large language models (LLMs) with human preferences is crucial for informing fair, economically sound, and statistically efficient decision-making processes. However, we argue that reinforcement learning from human feedback (RLHF) -- the predominant approach for aligning LLMs with human preferences through a reward model -- suffers from an inherent algorithmic bias due to its Kullback--Leibler-based regularization in optimization. In extreme cases, this bias could lead to a phenomenon we term preference collapse, where minority preferences are virtually disregarded. To mitigate this algorithmic bias, we introduce preference matching (PM) RLHF, a novel approach that provably aligns LLMs with the preference distribution of the reward model under the Bradley--Terry--Luce/Plackett--Luce model. Central to our approach is a PM regularizer that takes the form of the negative logarithm of the LLM's policy probability distribution over responses, which helps the LLM balance response diversification and reward maximization. Notably, we obtain this regularizer by solving an ordinary differential equation that is necessary for the PM property. For practical implementation, we introduce a conditional variant of PM RLHF that is tailored to natural language generation. Finally, we empirically validate the effectiveness of conditional PM RLHF through experiments on the OPT-1.3B and Llama-2-7B models, demonstrating a 29% to 41% improvement in alignment with human preferences, as measured by a certain metric, compared to standard RLHF.
- Abstract(参考訳): 大規模言語モデル(LLM)と人間の嗜好を正確に整合させることは、公正で経済的に健全で統計的に効率的な意思決定プロセスを実現する上で不可欠である。
しかしながら、人間フィードバックからの強化学習(RLHF)は、報酬モデルを通じてLLMと人間の嗜好を整合させる主要なアプローチであり、最適化におけるKulback-Leiblerベースの正規化による固有のアルゴリズムバイアスに悩まされていると論じる。
極端な場合、この偏見は、少数派の嗜好が事実上無視される、選好崩壊と呼ばれる現象につながる可能性がある。
このアルゴリズムバイアスを軽減するために、Bradley-Terry-Terry--Luce/Plackett--Luceモデルの下でLLMを優先分布に整合させる新しい手法であるRLHF(RLHF)を導入する。
我々のアプローチの中心となるPM正則化器は、LLMの応答に対するポリシー確率分布の負の対数という形で、LLMのバランス応答の多様化と報酬の最大化に役立つ。
特に、PM特性に必要となる通常の微分方程式を解くことで、この正規化子を得る。
本稿では,自然言語生成に適した条件付きPM RLHFを提案する。
最後に,OPT-1.3BモデルとLlama-2-7Bモデルを用いた実験により,条件PM RLHFの有効性を実証的に検証した。
関連論文リスト
- Post-hoc Reward Calibration: A Case Study on Length Bias [28.266675778940133]
リワードモデル(RM)は、トレーニングデータに突発的な相関を利用してバイアスを発生させることができる。
これらのバイアスは、誤った出力ランキング、準最適モデル評価、望ましくない振る舞いの増幅につながる可能性がある。
本稿では、追加データやトレーニングを使わずにバイアスを修正するという課題に対処する。
論文 参考訳(メタデータ) (2024-09-25T22:30:42Z) - Zeroth-Order Policy Gradient for Reinforcement Learning from Human
Feedback without Reward Inference [17.76565371753346]
本稿では,報酬推論を伴わない2つのRLHFアルゴリズムを提案する。
鍵となる考え方は、人間の嗜好と異なる局所値関数を推定し、ゼロ階勾配近似器でポリシー勾配を近似することである。
以上の結果から,報酬推論なしで一般RLHF問題の解法が確立できることが示唆された。
論文 参考訳(メタデータ) (2024-09-25T22:20:11Z) - Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
我々は、報酬モデルとポリシーをトレーニングするために、AIHF(Alignment with Integrated Human Feedback)と呼ばれる単一ステージアプローチを開発する。
提案した手法は、一般的なアライメントアルゴリズムに容易に還元し、活用できる、効率的なアルゴリズムの集合を認めている。
本研究では,LLMにおけるアライメント問題と,MuJoCoにおけるロボット制御問題を含む広範な実験により,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-06-11T01:20:53Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - MaxMin-RLHF: Towards Equitable Alignment of Large Language Models with
Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) は、言語モデルと人間の嗜好を一致させる。
予測最大化アルゴリズムを用いて嗜好分布の混合を学習し、人間の嗜好をよりよく表現する。
従来のRLHFアルゴリズムよりも16%以上の勝利率向上を実現している。
論文 参考訳(メタデータ) (2024-02-14T03:56:27Z) - WARM: On the Benefits of Weight Averaged Reward Models [63.08179139233774]
Weight Averaged Reward Models (WARM) を提案する。
最良N法とRL法を用いた要約タスクの実験は、WARMがLLM予測の全体的な品質とアライメントを改善することを示す。
論文 参考訳(メタデータ) (2024-01-22T18:27:08Z) - Nash Learning from Human Feedback [86.09617990412941]
ペアワイズフィードバックを用いた大規模言語モデルの微調整のための代替パイプラインを提案する。
我々はこのアプローチを人間のフィードバックからナッシュラーニング(NLHF)と呼ぶ。
ミラー降下原理に基づく新しいアルゴリズム解であるNash-MDを提案する。
論文 参考訳(メタデータ) (2023-12-01T19:26:23Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
本稿では,RLHFにおける報酬モデルの新たなパラメータ化について紹介する。
DPO(Direct Preference Optimization)と呼ばれる結果のアルゴリズムは、安定的で、性能が高く、計算的にも軽量である。
我々の実験は、DPOが人間の好みに合わせて微調整できるだけでなく、既存の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-29T17:57:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。