論文の概要: Decomposing the Neurons: Activation Sparsity via Mixture of Experts for Continual Test Time Adaptation
- arxiv url: http://arxiv.org/abs/2405.16486v1
- Date: Sun, 26 May 2024 08:51:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 20:58:51.629619
- Title: Decomposing the Neurons: Activation Sparsity via Mixture of Experts for Continual Test Time Adaptation
- Title(参考訳): ニューロンの分解:連続的なテスト時間適応のためのエキスパートの混合による活性化空間
- Authors: Rongyu Zhang, Aosong Cheng, Yulin Luo, Gaole Dai, Huanrui Yang, Jiaming Liu, Ran Xu, Li Du, Yuan Du, Yanbing Jiang, Shanghang Zhang,
- Abstract要約: 継続的なテスト時間適応(CTTA)は、トレーニング済みのモデルを進化し続けるターゲットドメインに適応させることを目的としている。
我々はCTTAタスクのアダプタとしてMixture-of-Activation-Sparsity-Experts (MoASE)の統合について検討する。
- 参考スコア(独自算出の注目度): 37.79819260918366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual Test-Time Adaptation (CTTA), which aims to adapt the pre-trained model to ever-evolving target domains, emerges as an important task for vision models. As current vision models appear to be heavily biased towards texture, continuously adapting the model from one domain distribution to another can result in serious catastrophic forgetting. Drawing inspiration from the human visual system's adeptness at processing both shape and texture according to the famous Trichromatic Theory, we explore the integration of a Mixture-of-Activation-Sparsity-Experts (MoASE) as an adapter for the CTTA task. Given the distinct reaction of neurons with low/high activation to domain-specific/agnostic features, MoASE decomposes the neural activation into high-activation and low-activation components with a non-differentiable Spatial Differentiate Dropout (SDD). Based on the decomposition, we devise a multi-gate structure comprising a Domain-Aware Gate (DAG) that utilizes domain information to adaptive combine experts that process the post-SDD sparse activations of different strengths, and the Activation Sparsity Gate (ASG) that adaptively assigned feature selection threshold of the SDD for different experts for more precise feature decomposition. Finally, we introduce a Homeostatic-Proximal (HP) loss to bypass the error accumulation problem when continuously adapting the model. Extensive experiments on four prominent benchmarks substantiate that our methodology achieves state-of-the-art performance in both classification and segmentation CTTA tasks. Our code is now available at https://github.com/RoyZry98/MoASE-Pytorch.
- Abstract(参考訳): 目標ドメインに事前学習モデルを適用することを目的としたCTTA(Continuous Test-Time Adaptation)が、ビジョンモデルにとって重要なタスクとして登場した。
現在の視覚モデルはテクスチャに大きく偏っているように見えるため、ある領域の分布から別の領域へのモデルを継続的に適応することは、深刻な破滅的な忘れ込みをもたらす可能性がある。
我々は,ヒトの視覚系における形状とテクスチャの両処理の適応性からインスピレーションを得て,CTTAタスクのアダプタとしてMixture-of-Activation-Sparsity-Experts (MoASE)を統合した。
ドメイン特異的/非依存的特徴に対する低/高活性化ニューロンの特異的反応により、MoASEは神経活性化を高活性化成分と低活性化成分に分解し、非分化性空間微分ドロップアウト(SDD)を生じる。
この分解に基づいて、ドメイン情報を利用して異なる強度のSDD後のスパースアクティベーションを処理する専門家と、より正確な特徴分解のためにSDDの機能選択閾値を適応的に割り当てるアクティベーションスパシティゲート(ASG)を組み合わせたマルチゲート構造を考案する。
最後に,モデルに連続的に適応する際の誤差蓄積問題を回避するために,HOMEOstatic-Proximal (HP)損失を導入する。
4つの顕著なベンチマークの大規模な実験は、我々の手法が分類とセグメント化のCTTAタスクにおいて最先端のパフォーマンスを達成することを実証している。
私たちのコードはhttps://github.com/RoyZry98/MoASE-Pytorch.comで利用可能です。
関連論文リスト
- Diffusion Models with Ensembled Structure-Based Anomaly Scoring for Unsupervised Anomaly Detection [35.46541584018842]
非教師なし異常検出(UAD)は、病理分類の有効な代替手段として現れる。
近年のUAD異常スコアリング機能は、強度のみに焦点を合わせ、構造的差異を無視することが多く、セグメンテーション性能を損なう。
構造的類似性(SSIM)は強度と構造的格差の両方を捉え、古典的な$l1$エラーよりも有利である。
論文 参考訳(メタデータ) (2024-03-21T09:50:39Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Domain-Adaptive Learning: Unsupervised Adaptation for Histology Images
with Improved Loss Function Combination [3.004632712148892]
本稿では,H&E染色組織像を対象とした非教師なし領域適応(UDA)のための新しいアプローチを提案する。
本手法では, 組織像に特有の課題に対処するために, 慎重に選択された既存の損失関数とともに, 新たな損失関数を提案する。
提案手法は, 組織像の最先端技術を超え, 精度, 堅牢性, 一般化の面で広く評価されている。
論文 参考訳(メタデータ) (2023-09-29T12:11:16Z) - ViDA: Homeostatic Visual Domain Adapter for Continual Test Time Adaptation [48.039156140237615]
目標ドメインの継続的な変更に事前訓練されたモデルを適用するために、連続的なテスト時間適応タスクを提案する。
我々はCTTA用のVisual Domain Adapter (ViDA) を設計し、ドメイン固有知識とドメイン共有知識の両方を明示的に扱う。
提案手法は,CTTAタスクの分類とセグメント化の両方において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-06-07T11:18:53Z) - CNN LEGO: Disassembling and Assembling Convolutional Neural Network [0.0]
人間の視覚知覚機構を模倣する畳み込みニューラルネットワーク(CNN)は多くのコンピュータビジョン領域で成功している。
上記の視覚認知機構に着想を得て,MDA-Task(MDA-Task)と呼ばれる新しいタスクについて検討する。
MDA-Taskは、ディープモデルを独立したパーツに分解し、LEGOのおもちゃをプレイするようなパフォーマンスコストを伴わずに、新しいディープモデルに組み立てることができる。
論文 参考訳(メタデータ) (2022-03-25T05:27:28Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Consistent Posterior Distributions under Vessel-Mixing: A Regularization
for Cross-Domain Retinal Artery/Vein Classification [30.30848090813239]
網膜A/V分類におけるクロスドメイン学習のための船舶混合型整合性正規化フレームワークを提案する。
提案手法は,対象ドメインに対する教師付き学習によって得られる上界に近い,最先端のクロスドメイン性能を実現する。
論文 参考訳(メタデータ) (2021-03-16T14:18:35Z) - Simple and Effective Prevention of Mode Collapse in Deep One-Class
Classification [93.2334223970488]
深部SVDDにおける超球崩壊を防止するための2つの正則化器を提案する。
第1の正則化器は、標準のクロスエントロピー損失によるランダムノイズの注入に基づいている。
第2の正規化器は、小さすぎるとミニバッチ分散をペナライズする。
論文 参考訳(メタデータ) (2020-01-24T03:44:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。