Explaining Modern Gated-Linear RNNs via a Unified Implicit Attention Formulation
- URL: http://arxiv.org/abs/2405.16504v2
- Date: Fri, 18 Oct 2024 12:20:11 GMT
- Title: Explaining Modern Gated-Linear RNNs via a Unified Implicit Attention Formulation
- Authors: Itamar Zimerman, Ameen Ali, Lior Wolf,
- Abstract summary: Recent advances in efficient sequence modeling have led to attention-free layers, such as Mamba, RWKV, and various gated RNNs.
We present a unified view of these models, formulating such layers as implicit causal self-attention layers.
Our framework compares the underlying mechanisms on similar grounds for different layers and provides a direct means for applying explainability methods.
- Score: 54.50526986788175
- License:
- Abstract: Recent advances in efficient sequence modeling have led to attention-free layers, such as Mamba, RWKV, and various gated RNNs, all featuring sub-quadratic complexity in sequence length and excellent scaling properties, enabling the construction of a new type of foundation models. In this paper, we present a unified view of these models, formulating such layers as implicit causal self-attention layers. The formulation includes most of their sub-components and is not limited to a specific part of the architecture. The framework compares the underlying mechanisms on similar grounds for different layers and provides a direct means for applying explainability methods. Our experiments show that our attention matrices and attribution method outperform an alternative and a more limited formulation that was recently proposed for Mamba. For the other architectures for which our method is the first to provide such a view, our method is effective and competitive in the relevant metrics compared to the results obtained by state-of-the-art Transformer explainability methods. Our code is publicly available.
Related papers
- NormXLogit: The Head-on-Top Never Lies [15.215985417763472]
Transformer architecture has emerged as the dominant choice for building large language models.
We propose a novel technique, called NormXLogit, for assessing the significance of individual input tokens.
We show that our approach consistently outperforms existing gradient-based methods in terms of faithfulness.
arXiv Detail & Related papers (2024-11-25T10:12:27Z) - Understanding the differences in Foundation Models: Attention, State Space Models, and Recurrent Neural Networks [50.29356570858905]
We introduce the Dynamical Systems Framework (DSF), which allows a principled investigation of all these architectures in a common representation.
We provide principled comparisons between softmax attention and other model classes, discussing the theoretical conditions under which softmax attention can be approximated.
This shows the DSF's potential to guide the systematic development of future more efficient and scalable foundation models.
arXiv Detail & Related papers (2024-05-24T17:19:57Z) - Attention Mechanisms Don't Learn Additive Models: Rethinking Feature Importance for Transformers [12.986126243018452]
We introduce the Softmax-Linked Additive Log-Odds Model (SLALOM), a novel surrogate model specifically designed to align with the transformer framework.
SLALOM demonstrates the capacity to deliver a range of faithful and insightful explanations across both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-05-22T11:14:00Z) - CLIP-QDA: An Explainable Concept Bottleneck Model [3.570403495760109]
We introduce an explainable algorithm designed from a multi-modal foundation model, that performs fast and explainable image classification.
Our explanations compete with existing XAI methods while being faster to compute.
arXiv Detail & Related papers (2023-11-30T18:19:47Z) - Classification of BCI-EEG based on augmented covariance matrix [0.0]
We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification.
We will test our approach on several datasets and several subjects using the MOABB framework.
arXiv Detail & Related papers (2023-02-09T09:04:25Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Embedded-model flows: Combining the inductive biases of model-free deep
learning and explicit probabilistic modeling [8.405013085269976]
We propose embedded-model flows which alternate general-purpose transformations with structured layers that embed domain-specific inductive biases.
We demonstrate that EMFs can be used to induce desirable properties such as multimodality, hierarchical coupling and continuity.
In experiments, we show that this approach outperforms state-of-the-art methods in common structured inference problems.
arXiv Detail & Related papers (2021-10-12T14:12:16Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images.
In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner.
We propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights.
arXiv Detail & Related papers (2020-07-13T18:05:36Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
We present a method for quantifying disentanglement that only uses the generative model.
We empirically evaluate several state-of-the-art models across multiple datasets.
arXiv Detail & Related papers (2020-06-05T20:54:11Z) - Explainable Matrix -- Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles [78.6363825307044]
We propose Explainable Matrix (ExMatrix), a novel visualization method for Random Forest (RF) interpretability.
It employs a simple yet powerful matrix-like visual metaphor, where rows are rules, columns are features, and cells are rules predicates.
ExMatrix applicability is confirmed via different examples, showing how it can be used in practice to promote RF models interpretability.
arXiv Detail & Related papers (2020-05-08T21:03:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.