論文の概要: SE3Set: Harnessing equivariant hypergraph neural networks for molecular representation learning
- arxiv url: http://arxiv.org/abs/2405.16511v1
- Date: Sun, 26 May 2024 10:43:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 20:49:07.159054
- Title: SE3Set: Harnessing equivariant hypergraph neural networks for molecular representation learning
- Title(参考訳): SE3Set:分子表現学習のためのハーネスリング同変ハイパーグラフニューラルネットワーク
- Authors: Hongfei Wu, Lijun Wu, Guoqing Liu, Zhirong Liu, Bin Shao, Zun Wang,
- Abstract要約: 分子表現学習に適したSE(3)同変ハイパーグラフニューラルネットワークアーキテクチャを開発した。
SE3Setは、小さな分子データセットのための最先端(SOTA)モデルと同等のパフォーマンスを示している。
MD22データセットを上回り、全ての分子で約20%の精度で顕著な改善を達成している。
- 参考スコア(独自算出の注目度): 27.713870291922333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we develop SE3Set, an SE(3) equivariant hypergraph neural network architecture tailored for advanced molecular representation learning. Hypergraphs are not merely an extension of traditional graphs; they are pivotal for modeling high-order relationships, a capability that conventional equivariant graph-based methods lack due to their inherent limitations in representing intricate many-body interactions. To achieve this, we first construct hypergraphs via proposing a new fragmentation method that considers both chemical and three-dimensional spatial information of molecular system. We then design SE3Set, which incorporates equivariance into the hypergragh neural network. This ensures that the learned molecular representations are invariant to spatial transformations, thereby providing robustness essential for accurate prediction of molecular properties. SE3Set has shown performance on par with state-of-the-art (SOTA) models for small molecule datasets like QM9 and MD17. It excels on the MD22 dataset, achieving a notable improvement of approximately 20% in accuracy across all molecules, which highlights the prevalence of complex many-body interactions in larger molecules. This exceptional performance of SE3Set across diverse molecular structures underscores its transformative potential in computational chemistry, offering a route to more accurate and physically nuanced modeling.
- Abstract(参考訳): 本稿では,分子表現学習に適したSE(3)同変ハイパーグラフニューラルネットワークアーキテクチャであるSE3Setを開発する。
ハイパーグラフは単に従来のグラフの拡張ではなく、高階関係をモデル化するための重要な要素である。
そこで我々はまず,分子系の化学情報と3次元空間情報の両方を考慮した断片化手法を提案する。
次に、ハイパーグラフニューラルネットワークに等価性を組み込んだSE3Setを設計する。
これにより、学習された分子表現が空間変換に不変であることを保証するため、分子特性の正確な予測に不可欠な堅牢性を提供する。
SE3Setは、QM9やMD17のような小さな分子データセットのための最先端(SOTA)モデルと同等のパフォーマンスを示している。
MD22データセットを上回り、全ての分子で約20%の精度向上を実現し、より大規模な分子における複雑な多体相互作用の頻度を強調している。
様々な分子構造にまたがるSE3Setの例外的な性能は、計算化学における変換可能性を強調し、より正確で物理的にニュアンスなモデリングへの道筋を提供する。
関連論文リスト
- Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
本稿では,原子の特徴,2次元離散分子構造,および3次元連続分子座標を含む分子の包括的表現を生成する新しいモデルを提案する。
拡散過程を認知するための新しいグラフトランスフォーマーアーキテクチャを提案する。
我々のモデルは、安定で多様な分子を設計するための有望なアプローチであり、分子モデリングの幅広いタスクに適用できる。
論文 参考訳(メタデータ) (2023-04-28T04:25:57Z) - Geometry-Complete Diffusion for 3D Molecule Generation and Optimization [3.8366697175402225]
3次元分子生成のための幾何-完全拡散モデル(GCDM)を導入する。
GCDMは、既存の3次元分子拡散モデルよりも条件および非条件設定間で大きなマージンで優れている。
また、GCDMの幾何学的特徴は、既存の3次元分子の幾何学的および化学組成を一貫して最適化するために再利用可能であることも示している。
論文 参考訳(メタデータ) (2023-02-08T20:01:51Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Learning 3D Representations of Molecular Chirality with Invariance to
Bond Rotations [2.17167311150369]
3次元分子コンバータのねじれ角を処理するSE(3)不変モデルを設計する。
本研究では, 学習空間における異なる立体異性体のコンホメータを識別するコントラスト学習, キラル中心をR/Sに分類する学習, エンテロマーが円偏光でどのように回転するかの予測, タンパクポケット内のドッキングスコアによるエナンチオマーのランキングの4つのベンチマークを用いて実験を行った。
論文 参考訳(メタデータ) (2021-10-08T21:25:47Z) - Learning Attributed Graph Representations with Communicative Message
Passing Transformer [3.812358821429274]
分子グラフ表現を改善するために,コミュニケーティブメッセージパッシングトランス (CoMPT) ニューラルネットワークを提案する。
分子を完全連結グラフとして扱う従来のトランスフォーマースタイルのGNNとは異なり、グラフ接続帰納バイアスを利用するメッセージ拡散機構を導入する。
論文 参考訳(メタデータ) (2021-07-19T11:58:32Z) - Augmenting Molecular Deep Generative Models with Topological Data
Analysis Representations [21.237758981760784]
分子のトポロジカルデータ解析(TDA)表現を付加したSMILES変分自動エンコーダ(VAE)を提案する。
実験の結果, このTDA拡張により, SMILES VAEは3次元幾何学と電子特性の複雑な関係を捉えることができることがわかった。
論文 参考訳(メタデータ) (2021-06-08T15:49:21Z) - ATOM3D: Tasks On Molecules in Three Dimensions [91.72138447636769]
近年、深層ニューラルネットワークが注目されている。
本稿では,生物分子のいくつかの重要なクラスにまたがる新しいデータセットと既存のデータセットのコレクションであるATOM3Dを紹介する。
これらのタスクごとに3次元の分子学習ネットワークを開発し、パフォーマンスを一貫して改善します。
論文 参考訳(メタデータ) (2020-12-07T20:18:23Z) - Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for
Molecular Structures [20.276492931562036]
この課題に対処するために、グラフニューラルネットワーク(GNN)の数が増えている。
本研究では,分子構造に対して強力かつ効率の良いGNNを設計することを目的とする。
多重分子グラフニューラルネットワーク(MXMNet)の構築
論文 参考訳(メタデータ) (2020-11-15T05:55:15Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
分子表現学習のための新しいフレームワークGROVERを提案する。
GROVERは、分子の豊富な構造的および意味的な情報を、巨大な未標識分子データから学習することができる。
分子表現学習において、最大のGNNであり、最大のトレーニングデータセットである、1000万個の未標識分子に1億のパラメータを持つGROVERを事前訓練します。
論文 参考訳(メタデータ) (2020-06-18T08:37:04Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
マルチビューグラフニューラルネットワーク(MV-GNN)を提案する。
MV-GNNでは,学習過程を安定させるために,自己注意型読み出しコンポーネントと不一致損失を導入する。
我々は、相互依存型メッセージパッシング方式を提案することにより、MV-GNNの表現力をさらに強化する。
論文 参考訳(メタデータ) (2020-05-17T04:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。