Reflected Flow Matching
- URL: http://arxiv.org/abs/2405.16577v1
- Date: Sun, 26 May 2024 14:09:43 GMT
- Title: Reflected Flow Matching
- Authors: Tianyu Xie, Yu Zhu, Longlin Yu, Tong Yang, Ziheng Cheng, Shiyue Zhang, Xiangyu Zhang, Cheng Zhang,
- Abstract summary: Continuous normalizing flows (CNFs) learn an ordinary differential equation to transform prior samples into data.
Flow matching (FM) has emerged as a simulation-free approach for training CNFs by regressing a velocity model towards the conditional velocity field.
We propose reflected flow matching (RFM) to train the velocity model in reflected CNFs by matching the conditional velocity fields in a simulation-free manner.
- Score: 36.38883647601013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous normalizing flows (CNFs) learn an ordinary differential equation to transform prior samples into data. Flow matching (FM) has recently emerged as a simulation-free approach for training CNFs by regressing a velocity model towards the conditional velocity field. However, on constrained domains, the learned velocity model may lead to undesirable flows that result in highly unnatural samples, e.g., oversaturated images, due to both flow matching error and simulation error. To address this, we add a boundary constraint term to CNFs, which leads to reflected CNFs that keep trajectories within the constrained domains. We propose reflected flow matching (RFM) to train the velocity model in reflected CNFs by matching the conditional velocity fields in a simulation-free manner, similar to the vanilla FM. Moreover, the analytical form of conditional velocity fields in RFM avoids potentially biased approximations, making it superior to existing score-based generative models on constrained domains. We demonstrate that RFM achieves comparable or better results on standard image benchmarks and produces high-quality class-conditioned samples under high guidance weight.
Related papers
- DFM: Interpolant-free Dual Flow Matching [0.8192907805418583]
We propose an interpolant-free dual flow matching (DFM) approach without explicit assumptions about the modeled vector field.
Experiments with the SMAP unsupervised anomaly detection show advantages of DFM when compared to the CNF trained with either maximum likelihood or FM objectives.
arXiv Detail & Related papers (2024-10-11T20:46:04Z) - Stream-level flow matching from a Bayesian decision theoretic perspective [4.935875591615496]
Flow matching (FM) is a family of training algorithms for fitting continuous normalizing flows (CNFs)
We show that viewing CFM training from a Bayesian decision theoretic perspective on parameter estimation opens the door to generalizations of CFM algorithms.
arXiv Detail & Related papers (2024-09-30T15:47:22Z) - Consistency Flow Matching: Defining Straight Flows with Velocity Consistency [97.28511135503176]
We introduce Consistency Flow Matching (Consistency-FM), a novel FM method that explicitly enforces self-consistency in the velocity field.
Preliminary experiments demonstrate that our Consistency-FM significantly improves training efficiency by converging 4.4x faster than consistency models.
arXiv Detail & Related papers (2024-07-02T16:15:37Z) - Flow matching achieves almost minimax optimal convergence [50.38891696297888]
Flow matching (FM) has gained significant attention as a simulation-free generative model.
This paper discusses the convergence properties of FM for large sample size under the $p$-Wasserstein distance.
We establish that FM can achieve an almost minimax optimal convergence rate for $1 leq p leq 2$, presenting the first theoretical evidence that FM can reach convergence rates comparable to those of diffusion models.
arXiv Detail & Related papers (2024-05-31T14:54:51Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Locality-constrained autoregressive cum conditional normalizing flow for
lattice field theory simulations [0.0]
Local action integral leads to simplifications to the input domain of conditional normalizing flows.
We find that the autocorrelation times of l-ACNF models outperform an equivalent normalizing flow model on the full lattice by orders of magnitude.
arXiv Detail & Related papers (2023-04-04T13:55:51Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
We introduce the generalized conditional flow matching (CFM) technique for continuous normalizing flows (CNFs)
CFM features a stable regression objective like that used to train the flow in diffusion models but enjoys the efficient inference of deterministic flow models.
A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference.
arXiv Detail & Related papers (2023-02-01T14:47:17Z) - Flow Matching for Generative Modeling [44.66897082688762]
Flow Matching is a simulation-free approach for training Continuous Normalizing Flows (CNFs)
We find that employing FM with diffusion paths results in a more robust and stable alternative for training diffusion models.
Training CNFs using Flow Matching on ImageNet leads to state-of-the-art performance in terms of both likelihood and sample quality.
arXiv Detail & Related papers (2022-10-06T08:32:20Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.