Improving and generalizing flow-based generative models with minibatch
optimal transport
- URL: http://arxiv.org/abs/2302.00482v4
- Date: Mon, 11 Mar 2024 14:27:48 GMT
- Title: Improving and generalizing flow-based generative models with minibatch
optimal transport
- Authors: Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet,
Yanlei Zhang, Jarrid Rector-Brooks, Guy Wolf, Yoshua Bengio
- Abstract summary: We introduce the generalized conditional flow matching (CFM) technique for continuous normalizing flows (CNFs)
CFM features a stable regression objective like that used to train the flow in diffusion models but enjoys the efficient inference of deterministic flow models.
A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference.
- Score: 90.01613198337833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuous normalizing flows (CNFs) are an attractive generative modeling
technique, but they have been held back by limitations in their
simulation-based maximum likelihood training. We introduce the generalized
conditional flow matching (CFM) technique, a family of simulation-free training
objectives for CNFs. CFM features a stable regression objective like that used
to train the stochastic flow in diffusion models but enjoys the efficient
inference of deterministic flow models. In contrast to both diffusion models
and prior CNF training algorithms, CFM does not require the source distribution
to be Gaussian or require evaluation of its density. A variant of our objective
is optimal transport CFM (OT-CFM), which creates simpler flows that are more
stable to train and lead to faster inference, as evaluated in our experiments.
Furthermore, we show that when the true OT plan is available, our OT-CFM method
approximates dynamic OT. Training CNFs with CFM improves results on a variety
of conditional and unconditional generation tasks, such as inferring single
cell dynamics, unsupervised image translation, and Schr\"odinger bridge
inference.
Related papers
- DFM: Interpolant-free Dual Flow Matching [0.8192907805418583]
We propose an interpolant-free dual flow matching (DFM) approach without explicit assumptions about the modeled vector field.
Experiments with the SMAP unsupervised anomaly detection show advantages of DFM when compared to the CNF trained with either maximum likelihood or FM objectives.
arXiv Detail & Related papers (2024-10-11T20:46:04Z) - Local Flow Matching Generative Models [19.859984725284896]
Flow Matching (FM) is a simulation-free method for learning a continuous and invertible flow to interpolate between two distributions.
We introduce Local Flow Matching (LFM), which learns a sequence of FM sub-models and each matches a diffusion process up to the time of the step size in the data-to-noise direction.
In experiments, we demonstrate the improved training efficiency and competitive generative performance of LFM compared to FM.
arXiv Detail & Related papers (2024-10-03T14:53:10Z) - Reflected Flow Matching [36.38883647601013]
Continuous normalizing flows (CNFs) learn an ordinary differential equation to transform prior samples into data.
Flow matching (FM) has emerged as a simulation-free approach for training CNFs by regressing a velocity model towards the conditional velocity field.
We propose reflected flow matching (RFM) to train the velocity model in reflected CNFs by matching the conditional velocity fields in a simulation-free manner.
arXiv Detail & Related papers (2024-05-26T14:09:43Z) - Optimal Flow Matching: Learning Straight Trajectories in Just One Step [89.37027530300617]
We develop and theoretically justify the novel Optimal Flow Matching approach.
It allows recovering the straight OT displacement for the quadratic transport in just one FM step.
The main idea of our approach is the employment of vector field for FM which are parameterized by convex functions.
arXiv Detail & Related papers (2024-03-19T19:44:54Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Perimeter Control Using Deep Reinforcement Learning: A Model-free
Approach towards Homogeneous Flow Rate Optimization [28.851432612392436]
Perimeter control maintains high traffic efficiency within protected regions by controlling transfer flows among regions to ensure that their traffic densities are below critical values.
Existing approaches can be categorized as either model-based or model-free, depending on whether they rely on network transmission models (NTMs) and macroscopic fundamental diagrams (MFDs)
arXiv Detail & Related papers (2023-05-29T21:22:08Z) - Flow Matching for Generative Modeling [44.66897082688762]
Flow Matching is a simulation-free approach for training Continuous Normalizing Flows (CNFs)
We find that employing FM with diffusion paths results in a more robust and stable alternative for training diffusion models.
Training CNFs using Flow Matching on ImageNet leads to state-of-the-art performance in terms of both likelihood and sample quality.
arXiv Detail & Related papers (2022-10-06T08:32:20Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.