論文の概要: Graph neural networks with configuration cross-attention for tensor compilers
- arxiv url: http://arxiv.org/abs/2405.16623v1
- Date: Sun, 26 May 2024 16:39:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 20:09:48.154802
- Title: Graph neural networks with configuration cross-attention for tensor compilers
- Title(参考訳): テンソルコンパイラの構成クロスアテンションを持つグラフニューラルネットワーク
- Authors: Dmitrii Khizbullin, Eduardo Rocha de Andrade, Thanh Hau Nguyen, Matheus Pedroza Ferreira, David R. Pugh,
- Abstract要約: 対象の計算グラフの高速な構成のスクリーニングを可能にするニューラルネットワークアーキテクチャであるTGraphを提案する。
我々は、我々の研究に関連するCO$排出量削減の可能性について、AI指向のデータセンターをホストする分野における家計排出量の50%以上に相当すると見積もっている。
- 参考スコア(独自算出の注目度): 0.157286095422595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the recent popularity of neural networks comes the need for efficient serving of inference workloads. A neural network inference workload can be represented as a computational graph with nodes as operators transforming multidimensional tensors. The tensors can be transposed and/or tiled in a combinatorially large number of ways, some configurations leading to accelerated inference. We propose TGraph, a neural graph architecture that allows screening for fast configurations of the target computational graph, thus representing an artificial intelligence (AI) tensor compiler in contrast to the traditional heuristics-based compilers. The proposed solution improves mean Kendall's $\tau$ across layout collections of TpuGraphs from 29.8% of the reliable baseline to 67.4% of TGraph. We estimate the potential CO$_2$ emission reduction associated with our work to be equivalent to over 50% of the total household emissions in the areas hosting AI-oriented data centers.
- Abstract(参考訳): 近年のニューラルネットワークの普及により、推論ワークロードの効率的な提供の必要性が高まっている。
ニューラルネットワーク推論ワークロードは、多次元テンソルを変換する演算子としてノードを持つ計算グラフとして表現することができる。
テンソルは、組合せ的に多くの方法で変換したり、タイルを張ったりできるが、いくつかの構成は推論を加速させる。
本稿では,従来のヒューリスティックスベースのコンパイラとは対照的に,人工知能(AI)テンソルコンパイラを表現するニューラルネットワークアーキテクチャTGraphを提案する。
提案されたソリューションでは、TpuGraphのレイアウトコレクションをまたいだKendallの$\tau$が、信頼性の高いベースラインの29.8%から、TGraphの67.4%に改善されている。
我々は、我々の研究に関連するCO$2$排出削減の可能性について、AI指向データセンターをホストする領域における世帯の排出量の50%以上に相当すると見積もっている。
関連論文リスト
- T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Scalable Graph Convolutional Network Training on Distributed-Memory
Systems [5.169989177779801]
グラフ畳み込みネットワーク(GCN)はグラフの深層学習に広く利用されている。
グラフ上の畳み込み操作は不規則なメモリアクセスパターンを誘導するので、GCNトレーニングのためのメモリと通信効率の並列アルゴリズムを設計することはユニークな課題である。
本稿では,大規模プロセッサ数にスケールする並列トレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-09T17:51:13Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - ItNet: iterative neural networks with small graphs for accurate and
efficient anytime prediction [1.52292571922932]
本研究では,計算グラフの観点から,メモリフットプリントが小さいネットワークモデルについて紹介する。
CamVidおよびCityscapesデータセットでセマンティックセグメンテーションの最新の結果を示します。
論文 参考訳(メタデータ) (2021-01-21T15:56:29Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - Isometric Graph Neural Networks [5.306334746787569]
我々はIsometric Graph Neural Networks (IGNN) の学習手法を提案する。
IGNNは、任意のGNNアルゴリズムがノード間の距離を反映した表現を生成するために、入力表現空間と損失関数を変更する必要がある。
我々はケンドールのタウ(KT)の400%まで、一貫した実質的な改善を観察する。
論文 参考訳(メタデータ) (2020-06-16T22:51:13Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGATは、スペクトルスペーシフィケーションを用いて、注目に基づくGNNを軽量にし、入力グラフの最適プルーニングを生成する手法である。
我々は,ノード分類タスクのための大規模実世界のグラフデータセット上でFastGATを実験的に評価した。
論文 参考訳(メタデータ) (2020-06-15T22:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。