A Provably Effective Method for Pruning Experts in Fine-tuned Sparse Mixture-of-Experts
- URL: http://arxiv.org/abs/2405.16646v3
- Date: Thu, 30 May 2024 17:30:42 GMT
- Title: A Provably Effective Method for Pruning Experts in Fine-tuned Sparse Mixture-of-Experts
- Authors: Mohammed Nowaz Rabbani Chowdhury, Meng Wang, Kaoutar El Maghraoui, Naigang Wang, Pin-Yu Chen, Christopher Carothers,
- Abstract summary: This paper provides the first provably efficient technique for pruning experts in finetuned MoE models.
We theoretically prove that prioritizing the pruning of the experts with a smaller change of the routers l2 norm from the pretrained model guarantees the preservation of test accuracy.
Although our theoretical analysis is centered on binary classification tasks on simplified MoE architecture, our expert pruning method is verified on large vision MoE models.
- Score: 49.394145046409044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The sparsely gated mixture of experts (MoE) architecture sends different inputs to different subnetworks, i.e., experts, through trainable routers. MoE reduces the training computation significantly for large models, but its deployment can be still memory or computation expensive for some downstream tasks. Model pruning is a popular approach to reduce inference computation, but its application in MoE architecture is largely unexplored. To the best of our knowledge, this paper provides the first provably efficient technique for pruning experts in finetuned MoE models. We theoretically prove that prioritizing the pruning of the experts with a smaller change of the routers l2 norm from the pretrained model guarantees the preservation of test accuracy, while significantly reducing the model size and the computational requirements. Although our theoretical analysis is centered on binary classification tasks on simplified MoE architecture, our expert pruning method is verified on large vision MoE models such as VMoE and E3MoE finetuned on benchmark datasets such as CIFAR10, CIFAR100, and ImageNet.
Related papers
- HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference [54.40808356999408]
We present HOBBIT, a mixed precision expert offloading system to enable flexible and efficient MoE inference.
Our key insight is that dynamically replacing less critical cache-miss experts with low precision versions can substantially reduce expert-loading latency.
HOBBIT achieves up to a 9.93x speedup in decoding compared to state-of-the-art MoE offloading systems.
arXiv Detail & Related papers (2024-11-03T04:25:46Z) - MoE-Pruner: Pruning Mixture-of-Experts Large Language Model using the Hints from Its Router [55.88046193872355]
Mixture-of-Experts (MoE) architectures face challenges such as high memory consumption and redundancy in experts.
We propose MoE-Pruner, a method that prunes weights with the smallest magnitudes multiplied by the corresponding input activations and router weights.
Our pruning method is one-shot, requiring no retraining or weight updates.
arXiv Detail & Related papers (2024-10-15T19:22:27Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts [41.83123857437985]
Training MoEs from scratch in a large-scale regime is prohibitively expensive.
We propose BAM (Branch-Attend-Mix), a simple yet effective method that addresses this shortcoming.
Our experiments on seed models ranging from 590 million to 2 billion parameters demonstrate that BAM surpasses baselines in both perplexity and downstream task performance.
arXiv Detail & Related papers (2024-08-15T17:19:12Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
We propose a method of grouping and pruning similar experts to improve the model's parameter efficiency.
We validate the effectiveness of our method by pruning three state-of-the-art MoE architectures.
The evaluation shows that our method outperforms other model pruning methods on a range of natural language tasks.
arXiv Detail & Related papers (2024-07-12T17:25:02Z) - Mixture of A Million Experts [1.240096657086732]
This paper introduces PEER, a novel layer design that utilizes the product key technique for sparse retrieval from a vast pool of experts.
Experiments on language modeling tasks demonstrate that PEER layers outperform dense FFWs and coarse-grained MoEs in terms of performance-compute trade-off.
arXiv Detail & Related papers (2024-07-04T20:59:20Z) - Lory: Fully Differentiable Mixture-of-Experts for Autoregressive Language Model Pre-training [73.90260246781435]
We present Lory, the first approach that scales such architectures to autoregressive language model pre-training.
We show significant performance gains over parameter-matched dense models on both perplexity and a variety of downstream tasks.
Despite segment-level routing, Lory models achieve competitive performance compared to state-of-the-art MoE models with token-level routing.
arXiv Detail & Related papers (2024-05-06T03:06:33Z) - Improving Expert Specialization in Mixture of Experts [0.7366405857677227]
Mixture of experts (MoE) is the simplest gated modular neural network architecture.
We show that the original MoE architecture and its training method do not guarantee intuitive task decompositions and good expert utilization.
We introduce a novel gating architecture, similar to attention, that improves performance and results in a lower entropy task decomposition.
arXiv Detail & Related papers (2023-02-28T16:16:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.