Mixture of A Million Experts
- URL: http://arxiv.org/abs/2407.04153v1
- Date: Thu, 4 Jul 2024 20:59:20 GMT
- Title: Mixture of A Million Experts
- Authors: Xu Owen He,
- Abstract summary: This paper introduces PEER, a novel layer design that utilizes the product key technique for sparse retrieval from a vast pool of experts.
Experiments on language modeling tasks demonstrate that PEER layers outperform dense FFWs and coarse-grained MoEs in terms of performance-compute trade-off.
- Score: 1.240096657086732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The feedforward (FFW) layers in standard transformer architectures incur a linear increase in computational costs and activation memory as the hidden layer width grows. Sparse mixture-of-experts (MoE) architectures have emerged as a viable approach to address this issue by decoupling model size from computational cost. The recent discovery of the fine-grained MoE scaling law shows that higher granularity leads to better performance. However, existing MoE models are limited to a small number of experts due to computational and optimization challenges. This paper introduces PEER (parameter efficient expert retrieval), a novel layer design that utilizes the product key technique for sparse retrieval from a vast pool of tiny experts (over a million). Experiments on language modeling tasks demonstrate that PEER layers outperform dense FFWs and coarse-grained MoEs in terms of performance-compute trade-off. By enabling efficient utilization of a massive number of experts, PEER unlocks the potential for further scaling of transformer models while maintaining computational efficiency.
Related papers
- HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference [54.40808356999408]
We present HOBBIT, a mixed precision expert offloading system to enable flexible and efficient MoE inference.
Our key insight is that dynamically replacing less critical cache-miss experts with low precision versions can substantially reduce expert-loading latency.
HOBBIT achieves up to a 9.93x speedup in decoding compared to state-of-the-art MoE offloading systems.
arXiv Detail & Related papers (2024-11-03T04:25:46Z) - MoE-I$^2$: Compressing Mixture of Experts Models through Inter-Expert Pruning and Intra-Expert Low-Rank Decomposition [32.97035551579975]
We introduce a two-stage compression method tailored for MoE to reduce the model size and decrease the computational cost.
Experiments on Qwen1.5-MoE-A2.7B, DeepSeek-V2-Lite, and Mixtral-8$times$7B demonstrate that our proposed methods can both reduce the model size and enhance inference efficiency.
arXiv Detail & Related papers (2024-11-01T20:37:58Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - A Provably Effective Method for Pruning Experts in Fine-tuned Sparse Mixture-of-Experts [49.394145046409044]
This paper provides the first provably efficient technique for pruning experts in finetuned MoE models.
We theoretically prove that prioritizing the pruning of the experts with a smaller change of the routers l2 norm from the pretrained model guarantees the preservation of test accuracy.
Although our theoretical analysis is centered on binary classification tasks on simplified MoE architecture, our expert pruning method is verified on large vision MoE models.
arXiv Detail & Related papers (2024-05-26T17:52:58Z) - XMoE: Sparse Models with Fine-grained and Adaptive Expert Selection [30.687511115573038]
tool is a novel MoE designed to enhance both the efficacy and efficiency of sparse MoE models.
tool can enhance model performance while decreasing the computation load at MoE layers by over 50% without sacrificing performance.
arXiv Detail & Related papers (2024-02-27T08:18:02Z) - Multilinear Mixture of Experts: Scalable Expert Specialization through Factorization [51.98792406392873]
Mixture of Experts (MoE) provides a powerful way to decompose dense layers into smaller, modular computations.
A major challenge lies in the computational cost of scaling the number of experts high enough to achieve fine-grained specialization.
We propose the Multilinear Mixture of Experts ($mu$MoE) layer to address this, focusing on vision models.
arXiv Detail & Related papers (2024-02-19T21:20:22Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead.
MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated.
However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation.
arXiv Detail & Related papers (2022-07-19T06:09:55Z) - Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained
Language Models [68.9288651177564]
We present a novel MoE architecture based on matrix product operators (MPO) from quantum many-body physics.
With the decomposed MPO structure, we can reduce the parameters of the original MoE architecture.
Experiments on the three well-known downstream natural language datasets based on GPT2 show improved performance and efficiency in increasing model capacity.
arXiv Detail & Related papers (2022-03-02T13:44:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.