Physics informed cell representations for variational formulation of multiscale problems
- URL: http://arxiv.org/abs/2405.16770v1
- Date: Mon, 27 May 2024 02:42:16 GMT
- Title: Physics informed cell representations for variational formulation of multiscale problems
- Authors: Yuxiang Gao, Soheil Kolouri, Ravindra Duddu,
- Abstract summary: Physics-Informed Neural Networks (PINNs) are emerging as a promising tool for solving partial differential equations (PDEs)
PINNs are not well suited for solving PDEs with multiscale features, particularly suffering from slow convergence and poor accuracy.
This article proposes a cell-based model architecture consisting of multilevel multiresolution grids coupled with a multilayer perceptron (MLP)
In essence, by cell-based model along with the parallel tiny-cuda-nn library, our implementation improves convergence speed and numerical accuracy.
- Score: 8.905008042172883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of graphical processing units, Physics-Informed Neural Networks (PINNs) are emerging as a promising tool for solving partial differential equations (PDEs). However, PINNs are not well suited for solving PDEs with multiscale features, particularly suffering from slow convergence and poor accuracy. To address this limitation of PINNs, this article proposes physics-informed cell representations for resolving multiscale Poisson problems using a model architecture consisting of multilevel multiresolution grids coupled with a multilayer perceptron (MLP). The grid parameters (i.e., the level-dependent feature vectors) and the MLP parameters (i.e., the weights and biases) are determined using gradient-descent based optimization. The variational (weak) form based loss function accelerates computation by allowing the linear interpolation of feature vectors within grid cells. This cell-based MLP model also facilitates the use of a decoupled training scheme for Dirichlet boundary conditions and a parameter-sharing scheme for periodic boundary conditions, delivering superior accuracy compared to conventional PINNs. Furthermore, the numerical examples highlight improved speed and accuracy in solving PDEs with nonlinear or high-frequency boundary conditions and provide insights into hyperparameter selection. In essence, by cell-based MLP model along with the parallel tiny-cuda-nn library, our implementation improves convergence speed and numerical accuracy.
Related papers
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Learning solutions of parametric Navier-Stokes with physics-informed
neural networks [0.3989223013441816]
We leverageformed-Informed Neural Networks (PINs) to learn solution functions of parametric Navier-Stokes equations (NSE)
We consider the parameter(s) of interest as inputs of PINs along with coordinates, and train PINs on numerical solutions of parametric-PDES for instances of the parameters.
We show that our proposed approach results in optimizing PINN models that learn the solution functions while making sure that flow predictions are in line with conservational laws of mass and momentum.
arXiv Detail & Related papers (2024-02-05T16:19:53Z) - Multilevel CNNs for Parametric PDEs [0.0]
We combine concepts from multilevel solvers for partial differential equations with neural network based deep learning.
An in-depth theoretical analysis shows that the proposed architecture is able to approximate multigrid V-cycles to arbitrary precision.
We find substantial improvements over state-of-the-art deep learning-based solvers.
arXiv Detail & Related papers (2023-04-01T21:11:05Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Accelerated Solutions of Coupled Phase-Field Problems using Generative
Adversarial Networks [0.0]
We develop a new neural network based framework that uses encoder-decoder based conditional GeneLSTM layers to solve a system of Cahn-Hilliard microstructural equations.
We show that the trained models are mesh and scale-independent, thereby warranting application as effective neural operators.
arXiv Detail & Related papers (2022-11-22T08:32:22Z) - PIXEL: Physics-Informed Cell Representations for Fast and Accurate PDE
Solvers [4.1173475271436155]
We propose a new kind of data-driven PDEs solver, physics-informed cell representations (PIXEL)
PIXEL elegantly combines classical numerical methods and learning-based approaches.
We show that PIXEL achieves fast convergence speed and high accuracy.
arXiv Detail & Related papers (2022-07-26T10:46:56Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Non-linear Independent Dual System (NIDS) for Discretization-independent
Surrogate Modeling over Complex Geometries [0.0]
Non-linear independent dual system (NIDS) is a deep learning surrogate model for discretization-independent, continuous representation of PDE solutions.
NIDS can be used for prediction over domains with complex, variable geometries and mesh topologies.
Test cases include a vehicle problem with complex geometry and data scarcity, enabled by a training method.
arXiv Detail & Related papers (2021-09-14T23:38:41Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.