ARC: A Generalist Graph Anomaly Detector with In-Context Learning
- URL: http://arxiv.org/abs/2405.16771v1
- Date: Mon, 27 May 2024 02:42:33 GMT
- Title: ARC: A Generalist Graph Anomaly Detector with In-Context Learning
- Authors: Yixin Liu, Shiyuan Li, Yu Zheng, Qingfeng Chen, Chengqi Zhang, Shirui Pan,
- Abstract summary: ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
- Score: 62.202323209244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph anomaly detection (GAD), which aims to identify abnormal nodes that differ from the majority within a graph, has garnered significant attention. However, current GAD methods necessitate training specific to each dataset, resulting in high training costs, substantial data requirements, and limited generalizability when being applied to new datasets and domains. To address these limitations, this paper proposes ARC, a generalist GAD approach that enables a ``one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly. Equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset using few-shot normal samples at the inference stage, without the need for retraining or fine-tuning on the target dataset. ARC comprises three components that are well-crafted for capturing universal graph anomaly patterns: 1) smoothness-based feature Alignment module that unifies the features of different datasets into a common and anomaly-sensitive space; 2) ego-neighbor Residual graph encoder that learns abnormality-related node embeddings; and 3) cross-attentive in-Context anomaly scoring module that predicts node abnormality by leveraging few-shot normal samples. Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
Related papers
- UMGAD: Unsupervised Multiplex Graph Anomaly Detection [40.17829938834783]
We propose a novel Unsupervised Multiplex Graph Anomaly Detection method, named UMGAD.
We first learn multi-relational correlations among nodes in multiplex heterogeneous graphs.
Then, to weaken the influence of noise and redundant information on abnormal information extraction, we generate attribute-level and subgraph-level augmented-view graphs.
arXiv Detail & Related papers (2024-11-19T15:15:45Z) - Zero-shot Generalist Graph Anomaly Detection with Unified Neighborhood Prompts [21.05107001235223]
Graph anomaly detection (GAD) aims to identify nodes in a graph that significantly deviate from normal patterns.
Existing GAD methods, whether supervised or unsupervised, are one-model-for-one-dataset approaches.
We propose a novel zero-shot generalist GAD approach UNPrompt that trains a one-for-all detection model.
arXiv Detail & Related papers (2024-10-18T22:23:59Z) - Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - GAD-NR: Graph Anomaly Detection via Neighborhood Reconstruction [36.56631787651942]
Graph Auto-Encoders (GAEs) encode graph data into node representations and identify anomalies by assessing the reconstruction quality of the graphs based on these representations.
We propose GAD-NR, a new variant of GAE that incorporates neighborhood reconstruction for graph anomaly detection.
Extensive experimentation conducted on six real-world datasets validates the effectiveness of GAD-NR, showcasing significant improvements (by up to 30% in AUC) over state-of-the-art competitors.
arXiv Detail & Related papers (2023-06-02T23:23:34Z) - DAGAD: Data Augmentation for Graph Anomaly Detection [57.92471847260541]
This paper devises a novel Data Augmentation-based Graph Anomaly Detection (DAGAD) framework for attributed graphs.
A series of experiments on three datasets prove that DAGAD outperforms ten state-of-the-art baseline detectors concerning various mostly-used metrics.
arXiv Detail & Related papers (2022-10-18T11:28:21Z) - From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale Contrastive Learning Approach [26.973056364587766]
Anomaly detection from graph data is an important data mining task in many applications such as social networks, finance, and e-commerce.
We propose a novel framework, graph ANomaly dEtection framework with Multi-scale cONtrastive lEarning (ANEMONE in short)
By using a graph neural network as a backbone to encode the information from multiple graph scales (views), we learn better representation for nodes in a graph.
arXiv Detail & Related papers (2022-02-11T09:45:11Z) - Enhancing Unsupervised Anomaly Detection with Score-Guided Network [13.127091975959358]
Anomaly detection plays a crucial role in various real-world applications, including healthcare and finance systems.
We propose a novel scoring network with a score-guided regularization to learn and enlarge the anomaly score disparities between normal and abnormal data.
We next propose a score-guided autoencoder (SG-AE), incorporating the scoring network into an autoencoder framework for anomaly detection.
arXiv Detail & Related papers (2021-09-10T06:14:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.