On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability
- URL: http://arxiv.org/abs/2405.16845v2
- Date: Sat, 26 Oct 2024 03:21:16 GMT
- Title: On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability
- Authors: Chenyu Zheng, Wei Huang, Rongzhen Wang, Guoqiang Wu, Jun Zhu, Chongxuan Li,
- Abstract summary: Several suggest that transformers learn a mesa-optimizer during autorere training.
We show that a stronger assumption related to the moments of data is the sufficient necessary condition that the learned mesa-optimizer can perform.
- Score: 34.43255978863601
- License:
- Abstract: Autoregressively trained transformers have brought a profound revolution to the world, especially with their in-context learning (ICL) ability to address downstream tasks. Recently, several studies suggest that transformers learn a mesa-optimizer during autoregressive (AR) pretraining to implement ICL. Namely, the forward pass of the trained transformer is equivalent to optimizing an inner objective function in-context. However, whether the practical non-convex training dynamics will converge to the ideal mesa-optimizer is still unclear. Towards filling this gap, we investigate the non-convex dynamics of a one-layer linear causal self-attention model autoregressively trained by gradient flow, where the sequences are generated by an AR process $x_{t+1} = W x_t$. First, under a certain condition of data distribution, we prove that an autoregressively trained transformer learns $W$ by implementing one step of gradient descent to minimize an ordinary least squares (OLS) problem in-context. It then applies the learned $\widehat{W}$ for next-token prediction, thereby verifying the mesa-optimization hypothesis. Next, under the same data conditions, we explore the capability limitations of the obtained mesa-optimizer. We show that a stronger assumption related to the moments of data is the sufficient and necessary condition that the learned mesa-optimizer recovers the distribution. Besides, we conduct exploratory analyses beyond the first data condition and prove that generally, the trained transformer will not perform vanilla gradient descent for the OLS problem. Finally, our simulation results verify the theoretical results.
Related papers
- Pretrained transformer efficiently learns low-dimensional target functions in-context [40.77319247558742]
We show that a nonlinear transformer optimized by gradient descent learns $f_*$ in-context with a prompt length that only depends on the dimension of the distribution of target functions $r$.
Our result highlights the adaptivity of the pretrained transformer to low-dimensional structures of the function class, which enables sample-efficient ICL.
arXiv Detail & Related papers (2024-11-04T19:24:39Z) - Bypassing the Exponential Dependency: Looped Transformers Efficiently Learn In-context by Multi-step Gradient Descent [26.764893400499354]
We show that linear looped Transformers can implement multi-step gradient descent efficiently for in-context learning.
Our results demonstrate that as long as the input data has a constant condition number, $n = O(d)$, the linear looped Transformers can achieve a small error.
arXiv Detail & Related papers (2024-10-15T04:44:23Z) - Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? [69.4145579827826]
We show a fast flow on the regression loss despite the gradient non-ity algorithms for our convergence landscape.
This is the first theoretical analysis for multi-layer Transformer in this setting.
arXiv Detail & Related papers (2024-10-10T18:29:05Z) - Transformers are Minimax Optimal Nonparametric In-Context Learners [36.291980654891496]
In-context learning of large language models has proven to be a surprisingly effective method of learning a new task from only a few demonstrative examples.
We develop approximation and generalization error bounds for a transformer composed of a deep neural network and one linear attention layer.
We show that sufficiently trained transformers can achieve -- and even improve upon -- the minimax optimal estimation risk in context.
arXiv Detail & Related papers (2024-08-22T08:02:10Z) - How do Transformers perform In-Context Autoregressive Learning? [76.18489638049545]
We train a Transformer model on a simple next token prediction task.
We show how a trained Transformer predicts the next token by first learning $W$ in-context, then applying a prediction mapping.
arXiv Detail & Related papers (2024-02-08T16:24:44Z) - Supervised Pretraining Can Learn In-Context Reinforcement Learning [96.62869749926415]
In this paper, we study the in-context learning capabilities of transformers in decision-making problems.
We introduce and study Decision-Pretrained Transformer (DPT), a supervised pretraining method where the transformer predicts an optimal action.
We find that the pretrained transformer can be used to solve a range of RL problems in-context, exhibiting both exploration online and conservatism offline.
arXiv Detail & Related papers (2023-06-26T17:58:50Z) - Trained Transformers Learn Linear Models In-Context [39.56636898650966]
Attention-based neural networks as transformers have demonstrated a remarkable ability to exhibit inattention learning (ICL)
We show that when transformer training over random instances of linear regression problems, these models' predictions mimic nonlinear of ordinary squares.
arXiv Detail & Related papers (2023-06-16T15:50:03Z) - Transformers learn to implement preconditioned gradient descent for
in-context learning [41.74394657009037]
Several recent works demonstrate that transformers can implement algorithms like gradient descent.
We ask: Can transformers learn to implement such algorithms by training over random problem instances?
For a transformer with $L$ attention layers, we prove certain critical points of the training objective implement $L$ iterations of preconditioned gradient descent.
arXiv Detail & Related papers (2023-06-01T02:35:57Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
We show that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
This is the first time that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
arXiv Detail & Related papers (2023-05-26T00:43:02Z) - Transformers learn in-context by gradient descent [58.24152335931036]
Training Transformers on auto-regressive objectives is closely related to gradient-based meta-learning formulations.
We show how trained Transformers become mesa-optimizers i.e. learn models by gradient descent in their forward pass.
arXiv Detail & Related papers (2022-12-15T09:21:21Z) - Understanding the Difficulty of Training Transformers [120.99980924577787]
We show that unbalanced gradients are not the root cause of the instability of training.
We propose Admin to stabilize the early stage's training and unleash its full potential in the late stage.
arXiv Detail & Related papers (2020-04-17T13:59:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.