Transformers are Minimax Optimal Nonparametric In-Context Learners
- URL: http://arxiv.org/abs/2408.12186v2
- Date: Wed, 2 Oct 2024 16:58:37 GMT
- Title: Transformers are Minimax Optimal Nonparametric In-Context Learners
- Authors: Juno Kim, Tai Nakamaki, Taiji Suzuki,
- Abstract summary: In-context learning of large language models has proven to be a surprisingly effective method of learning a new task from only a few demonstrative examples.
We develop approximation and generalization error bounds for a transformer composed of a deep neural network and one linear attention layer.
We show that sufficiently trained transformers can achieve -- and even improve upon -- the minimax optimal estimation risk in context.
- Score: 36.291980654891496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In-context learning (ICL) of large language models has proven to be a surprisingly effective method of learning a new task from only a few demonstrative examples. In this paper, we study the efficacy of ICL from the viewpoint of statistical learning theory. We develop approximation and generalization error bounds for a transformer composed of a deep neural network and one linear attention layer, pretrained on nonparametric regression tasks sampled from general function spaces including the Besov space and piecewise $\gamma$-smooth class. We show that sufficiently trained transformers can achieve -- and even improve upon -- the minimax optimal estimation risk in context by encoding the most relevant basis representations during pretraining. Our analysis extends to high-dimensional or sequential data and distinguishes the \emph{pretraining} and \emph{in-context} generalization gaps. Furthermore, we establish information-theoretic lower bounds for meta-learners w.r.t. both the number of tasks and in-context examples. These findings shed light on the roles of task diversity and representation learning for ICL.
Related papers
- In-Context Learning with Representations: Contextual Generalization of Trained Transformers [66.78052387054593]
In-context learning (ICL) refers to a capability of pretrained large language models, which can learn a new task given a few examples during inference.
This paper investigates the training dynamics of transformers by gradient descent through the lens of non-linear regression tasks.
arXiv Detail & Related papers (2024-08-19T16:47:46Z) - Asymptotic theory of in-context learning by linear attention [33.53106537972063]
In-context learning is a cornerstone of Transformers' success.
Questions about the necessary sample complexity, pretraining task diversity, and context length for successful ICL remain unresolved.
arXiv Detail & Related papers (2024-05-20T03:24:24Z) - How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression? [92.90857135952231]
Transformers pretrained on diverse tasks exhibit remarkable in-context learning (ICL) capabilities.
We study ICL in one of its simplest setups: pretraining a linearly parameterized single-layer linear attention model for linear regression.
arXiv Detail & Related papers (2023-10-12T15:01:43Z) - What and How does In-Context Learning Learn? Bayesian Model Averaging,
Parameterization, and Generalization [111.55277952086155]
We study In-Context Learning (ICL) by addressing several open questions.
We show that, without updating the neural network parameters, ICL implicitly implements the Bayesian model averaging algorithm.
We prove that the error of pretrained model is bounded by a sum of an approximation error and a generalization error.
arXiv Detail & Related papers (2023-05-30T21:23:47Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
This paper studies the performance of overfitted meta-learning under a linear regression model with Gaussian features.
We find new and interesting properties that do not exist in single-task linear regression.
Our analysis suggests that benign overfitting is more significant and easier to observe when the noise and the diversity/fluctuation of the ground truth of each training task are large.
arXiv Detail & Related papers (2023-04-09T20:36:13Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
We introduce a learning algorithm which directly optimize model's ability to learn text representations for effective learning of downstream tasks.
We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps.
arXiv Detail & Related papers (2020-04-12T09:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.