A re-calibration method for object detection with multi-modal alignment bias in autonomous driving
- URL: http://arxiv.org/abs/2405.16848v1
- Date: Mon, 27 May 2024 05:46:37 GMT
- Title: A re-calibration method for object detection with multi-modal alignment bias in autonomous driving
- Authors: Zhihang Song, Lihui Peng, Jianming Hu, Danya Yao, Yi Zhang,
- Abstract summary: Multi-modal object detection in autonomous driving has achieved great breakthroughs due to the usage of fusing complementary information from different sensors.
In reality, calibration matrices are fixed when the vehicles leave the factory, but vibration, bumps, and data lags may cause calibration bias.
We conducted experiments on SOTA detection method EPNet++ and proved slight bias on calibration can reduce the performance seriously.
- Score: 7.601405124830806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-modal object detection in autonomous driving has achieved great breakthroughs due to the usage of fusing complementary information from different sensors. The calibration in fusion between sensors such as LiDAR and camera is always supposed to be precise in previous work. However, in reality, calibration matrices are fixed when the vehicles leave the factory, but vibration, bumps, and data lags may cause calibration bias. As the research on the calibration influence on fusion detection performance is relatively few, flexible calibration dependency multi-sensor detection method has always been attractive. In this paper, we conducted experiments on SOTA detection method EPNet++ and proved slight bias on calibration can reduce the performance seriously. We also proposed a re-calibration model based on semantic segmentation which can be combined with a detection algorithm to improve the performance and robustness of multi-modal calibration bias.
Related papers
- UniCal: Unified Neural Sensor Calibration [32.7372115947273]
Self-driving vehicles (SDVs) require accurate calibration of LiDARs and cameras to fuse sensor data accurately for autonomy.
Traditional calibration methods leverage fiducials captured in a controlled and structured scene and compute correspondences to optimize over.
We propose UniCal, a unified framework for effortlessly calibrating SDVs equipped with multiple LiDARs and cameras.
arXiv Detail & Related papers (2024-09-27T17:56:04Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - SOAC: Spatio-Temporal Overlap-Aware Multi-Sensor Calibration using Neural Radiance Fields [10.958143040692141]
In rapidly-evolving domains such as autonomous driving, the use of multiple sensors with different modalities is crucial to ensure operational precision and stability.
To correctly exploit the provided information by each sensor in a single common frame, it is essential for these sensors to be accurately calibrated.
We leverage the ability of Neural Radiance Fields to represent different modalities in a common representation.
arXiv Detail & Related papers (2023-11-27T13:25:47Z) - CalibFormer: A Transformer-based Automatic LiDAR-Camera Calibration Network [11.602943913324653]
CalibFormer is an end-to-end network for automatic LiDAR-camera calibration.
We aggregate multiple layers of camera and LiDAR image features to achieve high-resolution representations.
Our method achieved a mean translation error of $0.8751 mathrmcm$ and a mean rotation error of $0.0562 circ$ on the KITTI dataset.
arXiv Detail & Related papers (2023-11-26T08:59:30Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
We propose a mechanism for calibrated detection transformers (Cal-DETR), particularly for Deformable-DETR, UP-DETR and DINO.
We develop an uncertainty-guided logit modulation mechanism that leverages the uncertainty to modulate the class logits.
Results corroborate the effectiveness of Cal-DETR against the competing train-time methods in calibrating both in-domain and out-domain detections.
arXiv Detail & Related papers (2023-11-06T22:13:10Z) - TrajMatch: Towards Automatic Spatio-temporal Calibration for Roadside
LiDARs through Trajectory Matching [12.980324010888664]
We propose TrajMatch -- the first system that can automatically calibrate for roadside LiDARs in both time and space.
Experiment results show that TrajMatch can achieve a spatial calibration error of less than 10cm and a temporal calibration error of less than 1.5ms.
arXiv Detail & Related papers (2023-02-04T12:27:01Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
We present a method to calibrate the parameters of any pair of sensors involving LiDARs, monocular or stereo cameras.
The proposed approach can handle devices with very different resolutions and poses, as usually found in vehicle setups.
arXiv Detail & Related papers (2021-01-12T12:02:26Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
We introduce the problem of calibration under domain shift and propose an importance sampling based approach to address it.
We evaluate and discuss the efficacy of our method on both real-world datasets and synthetic datasets.
arXiv Detail & Related papers (2020-06-29T21:50:07Z) - Calibration of Neural Networks using Splines [51.42640515410253]
Measuring calibration error amounts to comparing two empirical distributions.
We introduce a binning-free calibration measure inspired by the classical Kolmogorov-Smirnov (KS) statistical test.
Our method consistently outperforms existing methods on KS error as well as other commonly used calibration measures.
arXiv Detail & Related papers (2020-06-23T07:18:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.