CalibFormer: A Transformer-based Automatic LiDAR-Camera Calibration Network
- URL: http://arxiv.org/abs/2311.15241v2
- Date: Sun, 17 Mar 2024 05:30:40 GMT
- Title: CalibFormer: A Transformer-based Automatic LiDAR-Camera Calibration Network
- Authors: Yuxuan Xiao, Yao Li, Chengzhen Meng, Xingchen Li, Jianmin Ji, Yanyong Zhang,
- Abstract summary: CalibFormer is an end-to-end network for automatic LiDAR-camera calibration.
We aggregate multiple layers of camera and LiDAR image features to achieve high-resolution representations.
Our method achieved a mean translation error of $0.8751 mathrmcm$ and a mean rotation error of $0.0562 circ$ on the KITTI dataset.
- Score: 11.602943913324653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fusion of LiDARs and cameras has been increasingly adopted in autonomous driving for perception tasks. The performance of such fusion-based algorithms largely depends on the accuracy of sensor calibration, which is challenging due to the difficulty of identifying common features across different data modalities. Previously, many calibration methods involved specific targets and/or manual intervention, which has proven to be cumbersome and costly. Learning-based online calibration methods have been proposed, but their performance is barely satisfactory in most cases. These methods usually suffer from issues such as sparse feature maps, unreliable cross-modality association, inaccurate calibration parameter regression, etc. In this paper, to address these issues, we propose CalibFormer, an end-to-end network for automatic LiDAR-camera calibration. We aggregate multiple layers of camera and LiDAR image features to achieve high-resolution representations. A multi-head correlation module is utilized to identify correlations between features more accurately. Lastly, we employ transformer architectures to estimate accurate calibration parameters from the correlation information. Our method achieved a mean translation error of $0.8751 \mathrm{cm}$ and a mean rotation error of $0.0562 ^{\circ}$ on the KITTI dataset, surpassing existing state-of-the-art methods and demonstrating strong robustness, accuracy, and generalization capabilities.
Related papers
- UniCal: Unified Neural Sensor Calibration [32.7372115947273]
Self-driving vehicles (SDVs) require accurate calibration of LiDARs and cameras to fuse sensor data accurately for autonomy.
Traditional calibration methods leverage fiducials captured in a controlled and structured scene and compute correspondences to optimize over.
We propose UniCal, a unified framework for effortlessly calibrating SDVs equipped with multiple LiDARs and cameras.
arXiv Detail & Related papers (2024-09-27T17:56:04Z) - Kalib: Markerless Hand-Eye Calibration with Keypoint Tracking [52.4190876409222]
Hand-eye calibration involves estimating the transformation between the camera and the robot.
Recent advancements in deep learning offer markerless techniques, but they present challenges.
We propose Kalib, an automatic and universal markerless hand-eye calibration pipeline.
arXiv Detail & Related papers (2024-08-20T06:03:40Z) - YOCO: You Only Calibrate Once for Accurate Extrinsic Parameter in LiDAR-Camera Systems [0.5999777817331317]
In a multi-sensor fusion system composed of cameras and LiDAR, precise extrinsic calibration contributes to the system's long-term stability and accurate perception of the environment.
This paper proposes a novel fully automatic extrinsic calibration method for LiDAR-camera systems that circumvents the need for corresponding point registration.
arXiv Detail & Related papers (2024-07-25T13:44:49Z) - A re-calibration method for object detection with multi-modal alignment bias in autonomous driving [7.601405124830806]
Multi-modal object detection in autonomous driving has achieved great breakthroughs due to the usage of fusing complementary information from different sensors.
In reality, calibration matrices are fixed when the vehicles leave the factory, but vibration, bumps, and data lags may cause calibration bias.
We conducted experiments on SOTA detection method EPNet++ and proved slight bias on calibration can reduce the performance seriously.
arXiv Detail & Related papers (2024-05-27T05:46:37Z) - EdgeCalib: Multi-Frame Weighted Edge Features for Automatic Targetless
LiDAR-Camera Calibration [15.057994140880373]
We introduce an edge-based approach for automatic online calibration of LiDAR and cameras in real-world scenarios.
The edge features, which are prevalent in various environments, are aligned in both images and point clouds to determine the extrinsic parameters.
The results show a state-of-the-art rotation accuracy of 0.086deg and a translation accuracy of 0.977 cm, outperforming existing edge-based calibration methods in both precision and robustness.
arXiv Detail & Related papers (2023-10-25T13:27:56Z) - TrajMatch: Towards Automatic Spatio-temporal Calibration for Roadside
LiDARs through Trajectory Matching [12.980324010888664]
We propose TrajMatch -- the first system that can automatically calibrate for roadside LiDARs in both time and space.
Experiment results show that TrajMatch can achieve a spatial calibration error of less than 10cm and a temporal calibration error of less than 1.5ms.
arXiv Detail & Related papers (2023-02-04T12:27:01Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
We present a method to calibrate the parameters of any pair of sensors involving LiDARs, monocular or stereo cameras.
The proposed approach can handle devices with very different resolutions and poses, as usually found in vehicle setups.
arXiv Detail & Related papers (2021-01-12T12:02:26Z) - Uncertainty Quantification and Deep Ensembles [79.4957965474334]
We show that deep-ensembles do not necessarily lead to improved calibration properties.
We show that standard ensembling methods, when used in conjunction with modern techniques such as mixup regularization, can lead to less calibrated models.
This text examines the interplay between three of the most simple and commonly used approaches to leverage deep learning when data is scarce.
arXiv Detail & Related papers (2020-07-17T07:32:24Z) - Self-Calibration Supported Robust Projective Structure-from-Motion [80.15392629310507]
We propose a unified Structure-from-Motion (SfM) method, in which the matching process is supported by self-calibration constraints.
We show experimental results demonstrating robust multiview matching and accurate camera calibration by exploiting these constraints.
arXiv Detail & Related papers (2020-07-04T08:47:10Z) - Intra Order-preserving Functions for Calibration of Multi-Class Neural
Networks [54.23874144090228]
A common approach is to learn a post-hoc calibration function that transforms the output of the original network into calibrated confidence scores.
Previous post-hoc calibration techniques work only with simple calibration functions.
We propose a new neural network architecture that represents a class of intra order-preserving functions.
arXiv Detail & Related papers (2020-03-15T12:57:21Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
Miscalibration is a mismatch between a model's confidence and its correctness.
We show that focal loss allows us to learn models that are already very well calibrated.
We show that our approach achieves state-of-the-art calibration without compromising on accuracy in almost all cases.
arXiv Detail & Related papers (2020-02-21T17:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.