An Investigation of Conformal Isometry Hypothesis for Grid Cells
- URL: http://arxiv.org/abs/2405.16865v2
- Date: Thu, 10 Oct 2024 06:27:11 GMT
- Title: An Investigation of Conformal Isometry Hypothesis for Grid Cells
- Authors: Dehong Xu, Ruiqi Gao, Wen-Hao Zhang, Xue-Xin Wei, Ying Nian Wu,
- Abstract summary: Conformal isometry hypothesis is a potential explanation for hexagonal periodic patterns in grid cell response maps.
We conduct numerical experiments to show that this hypothesis leads to the hexagon periodic patterns of grid cells.
We propose a conformal modulation of the agent's input velocity, enabling the recurrent neural network of grid cells to satisfy the conformal isometry hypothesis automatically.
- Score: 45.67079714578615
- License:
- Abstract: This paper investigates the conformal isometry hypothesis as a potential explanation for hexagonal periodic patterns in grid cell response maps. The hypothesis posits that grid cell activity forms a high-dimensional vector in neural space, encoding the agent's position in 2D physical space. As the agent moves, this vector rotates within a 2D manifold in the neural space, driven by a recurrent neural network. The conformal hypothesis suggests that this neural manifold is a conformally isometric embedding of physical space, where local displacements in neural space are proportional to those in physical space. In this paper, we conduct numerical experiments to show that this hypothesis leads to the hexagon periodic patterns of grid cells, agnostic to the choice of transformation models. Furthermore, we present a theoretical understanding that hexagon patterns emerge by minimizing our loss function because hexagon flat torus exhibits minimal deviation from local conformal isometry. In addition, we propose a conformal modulation of the agent's input velocity, enabling the recurrent neural network of grid cells to satisfy the conformal isometry hypothesis automatically.
Related papers
- Emergence of Grid-like Representations by Training Recurrent Networks
with Conformal Normalization [48.99772993899573]
We study the emergence of hexagon grid patterns of grid cells based on a general recurrent neural network model.
We propose a simple yet general conformal normalization of the input velocity of the RNN.
We conduct extensive experiments to verify that conformal normalization is crucial for the emergence of hexagon grid patterns.
arXiv Detail & Related papers (2023-10-29T23:12:56Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Semisupervised regression in latent structure networks on unknown
manifolds [7.5722195869569]
We consider random dot product graphs, in which an edge is formed between two nodes with probability given by the inner product of their respective latent positions.
We propose a manifold learning and graph embedding technique to predict the response variable on out-of-sample nodes.
arXiv Detail & Related papers (2023-05-04T00:41:04Z) - Conformal Isometry of Lie Group Representation in Recurrent Network of
Grid Cells [52.425628028229156]
We study the properties of grid cells using recurrent network models.
We focus on a simple non-linear recurrent model that underlies the continuous attractor neural networks of grid cells.
arXiv Detail & Related papers (2022-10-06T05:26:49Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
In this letter we introduce an algorithm to infer the intrinsic dimension (ID) of datasets embedded in discrete spaces.
We demonstrate its accuracy on benchmark datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting.
This suggests that evolutive pressure acts on a low-dimensional manifold despite the high-dimensionality of sequences' space.
arXiv Detail & Related papers (2022-07-20T06:38:36Z) - Growing Isotropic Neural Cellular Automata [63.91346650159648]
We argue that the original Growing NCA model has an important limitation: anisotropy of the learned update rule.
We demonstrate that cell systems can be trained to grow accurate asymmetrical patterns through either of two methods.
arXiv Detail & Related papers (2022-05-03T11:34:22Z) - Estimate of the Neural Network Dimension using Algebraic Topology and
Lie Theory [0.0]
In this paper we present an approach to determine the smallest possible number of neurons in a layer of a neural network.
We specify the required dimensions precisely, assuming that there is a smooth manifold on or near which the data are located.
We derive the theory and validate it experimentally on toy data sets.
arXiv Detail & Related papers (2020-04-06T14:15:05Z) - Disorder-free localization in an interacting two-dimensional lattice
gauge theory [0.0]
Disorder-free localization has been recently introduced as a mechanism for ergodicity breaking in low-dimensional homogeneous lattice gauge theories.
We show that genuinely interacting systems in two spatial dimensions can become nonergodic as a consequence of this mechanism.
arXiv Detail & Related papers (2020-03-10T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.