Disorder-free localization in an interacting two-dimensional lattice
gauge theory
- URL: http://arxiv.org/abs/2003.04901v1
- Date: Tue, 10 Mar 2020 18:00:02 GMT
- Title: Disorder-free localization in an interacting two-dimensional lattice
gauge theory
- Authors: P. Karpov, R. Verdel, Y.-P. Huang, M. Schmitt, and M. Heyl
- Abstract summary: Disorder-free localization has been recently introduced as a mechanism for ergodicity breaking in low-dimensional homogeneous lattice gauge theories.
We show that genuinely interacting systems in two spatial dimensions can become nonergodic as a consequence of this mechanism.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Disorder-free localization has been recently introduced as a mechanism for
ergodicity breaking in low-dimensional homogeneous lattice gauge theories
caused by local constraints imposed by gauge invariance. We show that also
genuinely interacting systems in two spatial dimensions can become nonergodic
as a consequence of this mechanism. Specifically, we prove nonergodic behavior
in the quantum link model by obtaining a rigorous bound on the
localization-delocalization transition through a classical correlated
percolation problem implying a fragmentation of Hilbert space on the nonergodic
side of the transition. We study the quantum dynamics in this system by means
of an efficient and perturbatively controlled representation of the
wavefunction in terms of a variational network of classical spins akin to
artificial neural networks. We identify a distinguishing dynamical signature by
studying the propagation of line defects, yielding different light cone
structures in the localized and ergodic phases, respectively. The methods we
introduce in this work can be applied to any lattice gauge theory with
finite-dimensional local Hilbert spaces irrespective of spatial dimensionality.
Related papers
- On reconstruction of states from evolution induced by quantum dynamical
semigroups perturbed by covariant measures [50.24983453990065]
We show the ability to restore states of quantum systems from evolution induced by quantum dynamical semigroups perturbed by covariant measures.
Our procedure describes reconstruction of quantum states transmitted via quantum channels and as a particular example can be applied to reconstruction of photonic states transmitted via optical fibers.
arXiv Detail & Related papers (2023-12-02T09:56:00Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Beyond semiclassical time: dynamics in quantum cosmology [0.0]
We review two approaches to the definition of the Hilbert space and evolution in mechanical theories with local time-reparametrization invariance.
We discuss in which sense both approaches exhibit an inner product that is gauge-fixed via an operator version of the usual Faddeev-Popov procedure.
We note that a conditional probability interpretation of the physical states is possible, so that both formalisms are examples of quantum mechanics with a relational dynamics.
arXiv Detail & Related papers (2023-02-15T19:00:09Z) - Entanglement transition through Hilbert-space localization [0.0]
We study Hilbert-space localization of many-body dynamics due to ergodicity breaking.
We find a transition from a regime driven by quantum tunneling to a regime dominated by boson-boson interaction.
arXiv Detail & Related papers (2022-06-08T20:24:01Z) - Locality of Spontaneous Symmetry Breaking and Universal Spacing
Distribution of Topological Defects Formed Across a Phase Transition [62.997667081978825]
A continuous phase transition results in the formation of topological defects with a density predicted by the Kibble-Zurek mechanism (KZM)
We characterize the spatial distribution of point-like topological defects in the resulting nonequilibrium state and model it using a Poisson point process in arbitrary spatial dimension with KZM density.
arXiv Detail & Related papers (2022-02-23T19:00:06Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Boundary Chaos [0.0]
Scrambling in many-body quantum systems causes initially local observables to spread uniformly over the whole available space under unitary dynamics.
We present a free quantum circuit model, in which ergodicity is induced by an impurity interaction placed on the system's boundary.
arXiv Detail & Related papers (2021-12-09T18:34:08Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Phase space theory for open quantum systems with local and collective
dissipative processes [0.0]
We investigate driven dissipative quantum dynamics of an ensemble of two-level systems given by a Markovian master equation with collective and noncollective dissipators.
Our results expose, utilize and promote pioneered techniques in the context of laser theory.
arXiv Detail & Related papers (2020-06-05T07:22:02Z) - Quantum Mereology: Factorizing Hilbert Space into Subsystems with
Quasi-Classical Dynamics [0.0]
We study the question of how to decompose Hilbert space into a preferred tensor-product factorization.
We present an in-principle algorithm for finding such a decomposition.
This formalism could be relevant to the emergence of spacetime from quantum entanglement.
arXiv Detail & Related papers (2020-05-26T18:01:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.