論文の概要: Hawk: Learning to Understand Open-World Video Anomalies
- arxiv url: http://arxiv.org/abs/2405.16886v1
- Date: Mon, 27 May 2024 07:08:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 16:41:02.723705
- Title: Hawk: Learning to Understand Open-World Video Anomalies
- Title(参考訳): Hawk: オープンワールドビデオの異常を理解するための学習
- Authors: Jiaqi Tang, Hao Lu, Ruizheng Wu, Xiaogang Xu, Ke Ma, Cheng Fang, Bin Guo, Jiangbo Lu, Qifeng Chen, Ying-Cong Chen,
- Abstract要約: ビデオ異常検出(VAD)システムは、障害を自律的に監視し、識別し、手作業や関連するコストを削減できる。
我々は,インタラクティブな大規模ビジュアル言語モデル(VLM)を利用して,ビデオの異常を正確に解釈する新しいフレームワークであるHawkを紹介する。
言語記述による8000以上の異常ビデオを注釈付けし、さまざまなオープンワールドシナリオでの効果的なトレーニングを可能にしました。
- 参考スコア(独自算出の注目度): 76.9631436818573
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Video Anomaly Detection (VAD) systems can autonomously monitor and identify disturbances, reducing the need for manual labor and associated costs. However, current VAD systems are often limited by their superficial semantic understanding of scenes and minimal user interaction. Additionally, the prevalent data scarcity in existing datasets restricts their applicability in open-world scenarios. In this paper, we introduce Hawk, a novel framework that leverages interactive large Visual Language Models (VLM) to interpret video anomalies precisely. Recognizing the difference in motion information between abnormal and normal videos, Hawk explicitly integrates motion modality to enhance anomaly identification. To reinforce motion attention, we construct an auxiliary consistency loss within the motion and video space, guiding the video branch to focus on the motion modality. Moreover, to improve the interpretation of motion-to-language, we establish a clear supervisory relationship between motion and its linguistic representation. Furthermore, we have annotated over 8,000 anomaly videos with language descriptions, enabling effective training across diverse open-world scenarios, and also created 8,000 question-answering pairs for users' open-world questions. The final results demonstrate that Hawk achieves SOTA performance, surpassing existing baselines in both video description generation and question-answering. Our codes/dataset/demo will be released at https://github.com/jqtangust/hawk.
- Abstract(参考訳): ビデオ異常検出(VAD)システムは、障害を自律的に監視し、識別し、手作業や関連するコストを削減できる。
しかしながら、現在のVADシステムは、シーンの表面的意味理解と最小限のユーザインタラクションによって制限されることが多い。
さらに、既存のデータセットにおける一般的なデータ不足は、オープンワールドシナリオにおける適用性を制限している。
本稿では,対話型大規模視覚言語モデル(VLM)を利用して映像の異常を正確に解釈する新しいフレームワークであるHawkを紹介する。
異常ビデオと正常ビデオの動作情報の違いを認識して、Hawkは運動モダリティを明示的に統合し、異常識別を強化する。
動きの注意力を高めるために、動画のブランチに動きのモダリティに焦点を合わせることによって、動きとビデオ空間内での補助的な一貫性損失を構築する。
さらに, 動きから言語への解釈を改善するために, 動きと言語表現との明確な監督関係を確立する。
さらに、言語記述による8000以上の異常ビデオの注釈付け、さまざまなオープンワールドシナリオでの効果的なトレーニングを可能にし、また、ユーザによるオープンワールドの質問に対して、8,000以上の質問回答ペアを作成しました。
以上の結果から,Hawkはビデオ記述生成と質問応答の両方において,既存のベースラインを超え,SOTA性能を実現していることが示された。
私たちのコード/データセット/デモはhttps://github.com/jqtangust/hawk.comでリリースされます。
関連論文リスト
- VANE-Bench: Video Anomaly Evaluation Benchmark for Conversational LMMs [64.60035916955837]
VANE-Benchはビデオの異常や矛盾を検出するためのビデオLMMの熟練度を評価するために設計されたベンチマークである。
我々のデータセットは、既存の最先端のテキスト・ビデオ生成モデルを用いて合成された一連のビデオから構成される。
我々は、このベンチマークタスクにおいて、オープンソースとクローズドソースの両方で既存の9つのビデオLMMを評価し、ほとんどのモデルが微妙な異常を効果的に識別するのに困難に直面することを発見した。
論文 参考訳(メタデータ) (2024-06-14T17:59:01Z) - Multi-scale 2D Temporal Map Diffusion Models for Natural Language Video
Localization [85.85582751254785]
この問題に対処するための新しいアプローチをNLVLに提示する。
本手法は, 条件付きデノナイジング拡散プロセスによるグローバル2次元時間マップの直接生成を含む。
提案手法は,クエリとビデオデータの相互作用を様々な時間スケールで効果的にカプセル化する。
論文 参考訳(メタデータ) (2024-01-16T09:33:29Z) - Towards Video Anomaly Retrieval from Video Anomaly Detection: New
Benchmarks and Model [70.97446870672069]
ビデオ異常検出(VAD)はその潜在的な応用により注目されている。
Video Anomaly Retrieval (VAR)は、関連のある動画をモダリティによって実用的に検索することを目的としている。
一般的な異常データセットの上に構築されたUCFCrime-ARとXD-Violenceの2つのベンチマークを示す。
論文 参考訳(メタデータ) (2023-07-24T06:22:37Z) - Learning State-Aware Visual Representations from Audible Interactions [39.08554113807464]
自己中心型ビデオデータから表現を学習する自己教師型アルゴリズムを提案する。
音声信号を用いて、より学習しやすい対話の瞬間を識別する。
大規模なエゴセントリックな2つのデータセットに対して、これらのコントリビューションを広範囲に検証する。
論文 参考訳(メタデータ) (2022-09-27T17:57:13Z) - Unsupervised Video Domain Adaptation for Action Recognition: A
Disentanglement Perspective [37.45565756522847]
我々は2つの潜在要因からドメイン間ビデオを生成することを検討する。
TranSVAEフレームワークはそのような世代をモデル化するために開発される。
UCF-HMDB、Jester、Epic-Kitchensデータセットの実験は、TranSVAEの有効性と優位性を検証する。
論文 参考訳(メタデータ) (2022-08-15T17:59:31Z) - You Need to Read Again: Multi-granularity Perception Network for Moment
Retrieval in Videos [19.711703590063976]
本稿では,多粒度レベルでモダリティ内およびモダリティ間情報を知覚する新しい多粒度知覚ネットワーク(MGPN)を提案する。
具体的には、モーメント検索を多選択読解タスクとして定式化し、人間の読解戦略をフレームワークに統合する。
論文 参考訳(メタデータ) (2022-05-25T16:15:46Z) - Weakly-Supervised Action Detection Guided by Audio Narration [50.4318060593995]
ナレーション管理から学習し,RGB,モーションフロー,環境音などのマルチモーダル特徴を利用するモデルを提案する。
実験の結果,ノイズの多い音声ナレーションは優れた行動検出モデルを学ぶのに十分であることがわかった。
論文 参考訳(メタデータ) (2022-05-12T06:33:24Z) - Relation-aware Hierarchical Attention Framework for Video Question
Answering [6.312182279855817]
ビデオ中のオブジェクトの静的な関係と動的関係を学習するために,RHA(Relation-aware Hierarchical Attention)フレームワークを提案する。
特に、ビデオや質問は、まず事前訓練されたモデルによって埋め込まれ、視覚とテキストの特徴を得る。
我々は,時間的,空間的,意味的関係を考察し,階層的注意機構によりマルチモーダルな特徴を融合して回答を予測する。
論文 参考訳(メタデータ) (2021-05-13T09:35:42Z) - Spatio-Temporal Graph for Video Captioning with Knowledge Distillation [50.034189314258356]
空間と時間におけるオブジェクトの相互作用を利用したビデオキャプションのためのグラフモデルを提案する。
我々のモデルは解釈可能なリンクを構築し、明示的な視覚的グラウンドを提供することができる。
オブジェクト数の変動による相関を回避するため,オブジェクト認識型知識蒸留機構を提案する。
論文 参考訳(メタデータ) (2020-03-31T03:58:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。