論文の概要: Predicting from a Different Perspective: A Re-ranking Model for Inductive Knowledge Graph Completion
- arxiv url: http://arxiv.org/abs/2405.16902v2
- Date: Wed, 19 Jun 2024 09:37:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 03:39:39.292523
- Title: Predicting from a Different Perspective: A Re-ranking Model for Inductive Knowledge Graph Completion
- Title(参考訳): 異なる視点から予測する:帰納的知識グラフ補完のための再分類モデル
- Authors: Yuki Iwamoto, Ken Kaneiwa,
- Abstract要約: ルール推論モデルは、サブグラフを利用して関係パターンを規則として学習する。
ReDistLP(リンク予測のための個別モデル付き再ランク付け)と呼ばれる再ランク付けモデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rule-induction models have demonstrated great power in the inductive setting of knowledge graph completion. In this setting, the models are tested on a knowledge graph entirely composed of unseen entities. These models learn relation patterns as rules by utilizing subgraphs. Providing the same inputs with different rules leads to differences in the model's predictions. In this paper, we focus on the behavior of such models. We propose a re-ranking-based model called ReDistLP (Re-ranking with a Distinct Model for Link Prediction). This model enhances the effectiveness of re-ranking by leveraging the difference in the predictions between the initial retriever and the re-ranker. ReDistLP outperforms the state-of-the-art methods in 2 out of 3 benchmarks.
- Abstract(参考訳): ルール推論モデルは知識グラフ補完の帰納的設定において大きな力を発揮している。
この設定では、モデルは完全に目に見えないエンティティで構成された知識グラフでテストされる。
これらのモデルは、部分グラフを利用して関係パターンを規則として学習する。
同じ入力を異なるルールで提供すると、モデルの予測に違いが生じる。
本稿では,そのようなモデルの振る舞いに着目した。
本稿では,ReDistLP (Re-level with a Distinct Model for Link Prediction) という再ランクモデルを提案する。
このモデルは、初期検索者と再ランカとの予測の差を利用して、再ランク付けの有効性を高める。
ReDistLPは3つのベンチマークのうち2つで最先端のメソッドより優れている。
関連論文リスト
- Distilling Influences to Mitigate Prediction Churn in Graph Neural
Networks [4.213427823201119]
類似した性能を持つモデルは、予測チャーンと呼ばれる個々のサンプルの予測に大きな不一致を示す。
本研究では,モデル間でノードが使用する理由の変動を定量化するために,影響差(ID)と呼ばれる新しい指標を提案する。
また、安定なノードと不安定な予測を持つノードの違いも考慮し、どちらも同じ理由で異なる理由を生かしていると仮定する。
効率的な近似法としてDropDistillation(DD)を導入する。
論文 参考訳(メタデータ) (2023-10-02T07:37:28Z) - Did the Models Understand Documents? Benchmarking Models for Language
Understanding in Document-Level Relation Extraction [2.4665182280122577]
近年,ドキュメントレベルの関係抽出 (DocRE) が注目されている。
モデルはDocREで一貫したパフォーマンス向上を達成するが、根底にある決定ルールはまだ検討されていない。
本稿では,この質問に答える第一歩として,モデルを包括的に評価する新たな視点を紹介する。
論文 参考訳(メタデータ) (2023-06-20T08:52:05Z) - Deep Explainable Learning with Graph Based Data Assessing and Rule
Reasoning [4.369058206183195]
本稿では、ノイズハンドリングにおけるディープモデルの利点とエキスパートルールに基づく解釈可能性を組み合わせたエンドツーエンドのディープ・ツー・エンドのディープ・説明可能な学習手法を提案する。
提案手法は, 工業生産システムにおいて, 予測精度に匹敵し, より高い一般化安定性, より優れた解釈可能性を示す。
論文 参考訳(メタデータ) (2022-11-09T05:58:56Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Demystifying Code Summarization Models [5.608277537412537]
我々は、極端要約、code2vec、code2seq、Sequence GNNの4つの顕著なコード要約モデルを評価する。
結果は、すべてのモデルが意味的な意味をほとんど含まない構文的および語彙的特性に基づいて予測することを示している。
本稿では,トレーニングデータのレンズを用いて,コード要約モデルの予測を説明する新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T03:17:46Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
人間可読性は機械学習モデル解釈可能性にとって重要で望ましい標準である。
従来の方法を用いて解釈可能なモデルを訓練し,それを簡潔で可読なコードに抽出する。
本稿では,幅広いユースケースで効率的に,確実に高品質な結果を生成する分別線形曲線フィッティングアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-01-21T01:46:36Z) - Why do classifier accuracies show linear trends under distribution
shift? [58.40438263312526]
あるデータ分布上のモデルの精度は、別の分布上の精度のほぼ線形関数である。
2つのモデルが予測で一致する確率は、精度レベルだけで推測できるものよりも高いと仮定します。
分布シフトの大きさが大きければ, 2 つの分布のモデルを評価する場合, 線形傾向が生じなければならない。
論文 参考訳(メタデータ) (2020-12-31T07:24:30Z) - To what extent do human explanations of model behavior align with actual
model behavior? [91.67905128825402]
モデル推論決定の人間による説明が、モデルが実際にこれらの決定を下す方法と一致する程度を調べた。
自然言語の人間の説明が入力語に対するモデル感度とどのように一致するかを定量化する2つのアライメント指標を定義した。
モデルと人間の説明との整合は、NLI上のモデルの精度によって予測されないことが判明した。
論文 参考訳(メタデータ) (2020-12-24T17:40:06Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [55.28436972267793]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Realistic Re-evaluation of Knowledge Graph Completion Methods: An
Experimental Study [0.0]
本論文は,埋め込みモデルの真の有効性を評価することを目的とした,最初の体系的研究である。
実験の結果、これらのモデルは以前よりもはるかに精度が低いことが分かりました。
論文 参考訳(メタデータ) (2020-03-18T01:18:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。